User Manual for

Mattias Blennow
and
Enrique Fernandez-Martinez

KTH Theoretical Physics
AlbaNova University Center
10691 Stockholm
Sweden

and

Departamento de Física Teórica
Universidad Autónoma de Madrid
Cantoblanco E-28049 Madrid
Spain

Version 1.4.0
©© MonteCUBES is distributed under a Creative Commons-Attribution licence.
Abstract

MonteCUBES is a package created to provide the possibility of easily performing Markov Chain Monte Carlo (MCMC) simulations of neutrino oscillation experiments. This document is the end-user manual for MonteCUBES and thus provides instructions on how to install and use it along with other tools. The MonteCUBES distribution consists of two main parts. The first part of the distribution is a C library written as a plug-in to GLoBES [1, 2]. This part enables the user to perform MCMC samplings of the parameter space of neutrino oscillations. The fact that it is written as a plug-in to GLoBES makes it simple to define and study different experimental setups, as well as the possibility of adding different new physics. The second part of MonteCUBES is a graphical Matlab interface, which makes it easy to plot simulation results in a variety of different ways, as well as export higher-level data such as contours and graphs, without reference to the originally produced MCMC results.
Terms of usage

Referencing the MonteCUBES software

MonteCUBES has been developed as a tool for academic use. It is distributed as open-source under the Creative Commons–Attribution licence. If you use MonteCUBES to produce a publication or talk, please cite:

M. Blennow and E. Fernandez-Martinez
Neutrino oscillation parameter sampling with MonteCUBES

Do not cite this manual itself, it is not a scientific publication and will evolve along with the MonteCUBES software. Of course, if you are using MonteCUBES then you will also be using GLoBES. Do not forget to give proper academic credit also to the GLoBES developers (see the GLoBES manual for details).
CONTENTS

3.4 Examples of bad convergence 47
3.5 Notes on filtering ... 47

A Markov Chain Monte Carlo theory 51
 A.1 The Metropolis–Hastings sampling algorithm 51
 A.1.1 Convergence and finer details 52
 A.2 Usage and interpretation of GLoBES methods 54
 A.2.1 The GLoBES χ^2 as the log-likelihood 55
 A.2.2 Notes on priors 56
 A.2.3 Interpreting the results 56
 A.3 The MonteCUBES degeneracy solver 57
 A.3.1 Chain heating .. 58
 A.3.2 Degenerate steps 58
 A.3.3 Which method do I use? 59
 A.3.4 The temperature lowering degeneracy finder 59

B The NonUnitarity Engine (NUE) 63
 B.1 Theory of a non-unitary mixing matrix 63
 B.2 API definitions ... 66
 B.2.1 Methods ... 66
 B.2.2 Constants .. 72

C The nSI Event Generator Engine (nSIEGE) 75
 C.1 Theory of a non-standard matter interactions 75
 C.2 API definitions ... 76
 C.2.1 Methods ... 76
 C.2.2 Constants .. 82
Chapter 1
Introduction

1.1 What is MonteCUBES?

The Monte Carlo Utility Based Experiment Simulator (MonteCUBES) is a utility designed to provide a simple and straightforward way of performing Markov Chain Monte Carlo (MCMC) sampling of the parameter space for any setup of terrestrial neutrino oscillation experiments. In particular, it has lately become increasingly popular to not only consider neutrino oscillations within the standard framework, in which the parameters consist of two mass square differences, three mixing angles and a CP-violating phase, but also to include the effects of various non-standard physics. Thus, the parameter space is in general high-dimensional and this makes deterministic algorithms for probing it, such as griding and deterministic minimization, inefficient. Instead, the complexity of a stochastic algorithm does not grow at the same rate with dimensionality and it is therefore ideal for problems of this kind. The MonteCUBES distribution consists of two parts:

1. A C library in the form of a plug-in to the General Long Baseline Experiment Simulator (GLoBES) [1, 2]. As the GLoBES software package already includes several methods for defining neutrino oscillation experiments, computing event rates, etc., there would be no use in doubling this work. Thus, the MonteCUBES C library makes use of these methods in order to provide a simple and structured user interface. It adds methods for defining MCMC parameters and for performing the actual simulation. The actual Monte Carlo method employed is the Metropolis–Hastings sampling algorithm (see App. A). Since the MonteCUBES C library is a plug-in to GLoBES, files used with GLoBES for describing experiments (Abstract Experiment Definition Language, AEDL, files) will also work with MonteCUBES. The MonteCUBES C library was constructed with GLoBES 3.0, but should be compatible also with some older versions of GLoBES. However, GLoBES 3.0 is the first version implementing the possibility of defining new physics and one of the major strengths
of MonteCUBES is the possibility of exploring large-dimensional parameter spaces.

2. A graphical user interface (GUI) for Matlab. The raw sampling data produced by the MonteCUBES C library can, although it is well-defined, be somewhat cumbersome to handle. In order to facilitate the usage of MonteCUBES, its distribution also includes a set of Matlab files intended to simplify this process and create results which are easier to overview and interpret. The GUI will read the raw sampling data and provide the means to produce a number of different plots using that data. In addition to allowing the data to be plotted in Matlab, the GUI also provides the possibility of exporting higher level data (such as actual contours and tabulized functions rather than the raw samples) for inclusion in a plotting program of the user’s choice. No preknowledge of Matlab is required in order to use the GUI, although some experience in writing inline functions may be helpful for some of the more advanced features.

1.2 What is MonteCUBES not?

MonteCUBES is not a stand-alone application. Thus, it is highly dependent on other software. In particular, since the C library is a GLoBES plug-in, a working installation of GLoBES is required in order to use it (we recommend version 3.0 or later). However, apart from the dependency on GLoBES, the MonteCUBES C library does not have any additional requirements over those already put by GLoBES (such as the proper compilers and scientific libraries).

Naturally, the Matlab GUI also requires a working copy of Matlab. The GUI was written for Matlab 7.0 and earlier versions are not supported (although the GUI might still work properly). However, processing the raw sampling files created by the C library is possible even if the C library is not installed.

1.3 Versioning

The current version of MonteCUBES is 1.4.0. The version number has the following interpretation:

- The first number denotes the release number. It will increase by one when major updates, rewriting of code, and new functions are added compared to the previous release.

- The second number denotes the major revision number. It is increased by one whenever new functionality is added.

- The final number denotes the minor revision number. It is increased whenever a new distribution is put together after any minor change has been made.
1.3. VERSIONING

- In addition, the version number may be followed by a b, denoting that it is a beta version. In this case, the distribution has been released for public testing, but it is still experimental and more likely to contain bugs.

Our aim is to improve on MonteCUBES whenever possible. If you want to give us feedback, please do so at emb@kth.se / enrique.fernandez-martinez@uam.es. In order for us to properly address your feedback, we would appreciate if you would include information which versions of MonteCUBES, GLoBES, and Matlab you are using.
Chapter 2

The MonteCUBES C library

2.1 Installation

2.1.1 Prerequisites for installation of MonteCUBES

Installation of MonteCUBES requires that you have a working installation of GLoBES. GLoBES can be downloaded from:

http://www.mpi-hd.mpg.de/lin/globes/

MonteCUBES was developed with GLoBES 3.0.12. GLoBES versions earlier than 3.0 are not supported by MonteCUBES.

The MonteCUBES installer will install the library libmontecubes into the same directory as your GLoBES installation. In order to compile programs using this library, you will therefore only have to add -lmontecubes to the linker options.

2.1.2 Installation Instructions

MonteCUBES follows the standard GNU installation procedure with the additional requirement that you must install it in the same directory as GLoBES. To compile MonteCUBES you will need an ANSI C-compiler. After unpacking the distribution the Makefiles can be prepared using the configure command,

 ./configure

NOTE! If you did not install GLoBES in the default directory, then you will have to add the option --prefix=GLB_DIR, where GLB_DIR is the absolute path to your GLoBES installation.

 You can then build the library by typing,

 make

A shared version of the library will be compiled by default.

The MonteCUBES library can then be installed using the command,
make install

The default install directory prefix is `/usr/local`.

2.1.3 Basic Installation

These are generic installation instructions.

The `configure` shell script attempts to guess correct values for various system-dependent variables used during compilation. It uses those values to create a `Makefile` in each directory of the package. It may also create one or more `.h` files containing system-dependent definitions. Finally, it creates a shell script `config.status` that you can run in the future to recreate the current configuration, a file `config.cache` that saves the results of its tests to speed up reconfiguring, and a file `config.log` containing compiler output (useful mainly for debugging `configure`).

If you need to do unusual things to compile the package, please try to figure out how `configure` could check whether to do them, and mail diffs or instructions to the address given in the `README` so they can be considered for the next release. If at some point `config.cache` contains results you don’t want to keep, you may remove or edit it.

The file `configure.ac` is used to create `configure` by a program called `autoconf`. You only need `configure.ac` if you want to change it or regenerate `configure` using a newer version of `autoconf`.

The simplest way to compile this package is:

1. cd to the directory containing the package’s source code and type `./configure` to configure the package for your system. If you’re using `csh` on an old version of System V, you might need to type `sh ./configure` instead to prevent `csh` from trying to execute `configure` itself.

 Running `configure` takes a while. While running, it prints some messages telling which features it is checking for.

2. Type `make` to compile the package.

3. Type `make install` to install the programs and any data files and documentation.

4. You can remove the program binaries and object files from the source code directory by typing `make clean`. To also remove the files that `configure` created (so you can compile the package for a different kind of computer), type `make distclean`. There is also a `make maintainer-clean` target, but that is intended mainly for the package’s developers. If you use it, you may have to get all sorts of other programs in order to regenerate files that came with the distribution.

5. Since you’ve installed a library don’t forget to run `ldconfig`!
2.2. API DEFINITIONS

2.1.4 If your GLoBES copy is installed in a different directory

If you installed GLoBES in a directory different from the default (one reason for doing this could be lack of root privileges), then you will have to install MonteCUBES in that same directory as well. This is done by

```
./configure --prefix=GLB_DIR
```

where GLB_DIR is the directory of the GLoBES installation, and then follow the usual installation guide. Since MonteCUBES will then be installed in the same directory as GLoBES, you will not have to tell the compiler to add additional directories to look for header files. However, you will have to tell the linker that it should include the montecubes library.

A typical compiler command is

```
gcc -c my_program.c -I$GLB_DIR/include/
```

and a typical linker command is

```
gcc my_program.o -lglobes -lmontecubes -L$GLB_DIR/lib/ -o my_executable
```

More information on this issue can be obtained by having a look into the output of make install.

CAVEAT: It is in principle possible to have many installations on one machine, especially the situation of having an installation by root and by a user at the same time might occur. However it is strictly warned against this possibility since it is *extremely* likely to create some versioning problem at some time!

Installation Names

By default, make install will install the package’s files in /usr/local/bin, /usr/local/include, etc. You can specify an installation prefix other than /usr/local by giving configure the option --prefix=PATH. The path into which you install MonteCUBES should be the same as the one where you installed GLoBES, i.e., you should give the same options to the MonteCUBES configure script as you gave the GLoBES configure script.

2.2 API definitions

This section lists the functions defined in montecubes.h and specifies their usage. In order to use them, you must include montecubes.h as a header file in your program (typically by putting #include <montecubes/montecubes.h> along with the inclusion of the other headers). The header file is located in $INSTALLDIR/include/montecubes after installation (where $INSTALLDIR is the directory where you installed GLoBES and MonteCUBES).
2.2.1 Basic usage definitions

The functions listed below are the ones necessary to implement the most basic usage of MonteCUBES. Unless you are planning to customize your MonteCUBES usage by changing the step proposal function, prior function, etc., and only use the basic MonteCUBES methods, such as running a Markov Chain Monte Carlo simulation with Gaussian steps and no tweaks, these are the only functions you will need.

```
int mcb_setChainNo (int N)
This function sets the number of chains to use in the Monte Carlo. It has protections against setting a non-positive number. Use this function prior to calling the Monte Carlo method. The preset number of chains is four.

N – The number of chains to use.

Returns: MCB_OK if successful, MCB_SET_ERR otherwise.
```

```
int mcb_setBurnNo (int N)
This function sets the number of samples in the burn-in (per chain). These samples will not be considered when testing for convergence but will still be written to the result files. The burn-in length will be stored in the summary file so that the burned samples can be removed from the result if desirable. If the burn length is set to MCB_DYNAMIC_BURN, then a dynamic burn process will be used. The preset burn-in length is 1000.

N – The number of samples to use as burn-in.

Returns: MCB_OK if successful, MCB_SET_ERR otherwise.
```

```
int mcb_setLengthMax (int N)
This function sets the maximum length of one Markov Chain (after burn-in). This number of samples will never be exceeded even if the Monte Carlo has not converged. If no convergence check is made, then this number of samples will be produced. The preset maximum chain length is 10^6.

N – The number to use for maximum chain length.

Returns: MCB_OK if successful, MCB_SET_ERR if input is smaller than minimum chain length.
```

```
int mcb_setLengthMin (int N)
This function sets the minimum length of one Markov Chain (after burn-in). This number of samples will always be produced, even if the Monte Carlo has converged. The preset minimum chain length is 5000.

N – The number to use for minimum chain length.

Returns: MCB_OK if successful, MCB_SET_ERR if input is larger than maximum chain length or input is negative.
```
2.2. API DEFINITIONS

```c
int mcb_setLengthMinMax (int Min, int Max)
This function sets both the minimum and maximum length of one Markov
Chain (after burn-in). The Monte Carlo will always produce a number of
samples between these two numbers regardless of convergence checks. If no
convergence check is made, then the chain length will reach the maximum
number of samples. The preset minimum chain length is 5000 and the
preset maximum chain length is \(10^6\).

Min – The number to use for minimum chain length.

Max – The number to use for maximum chain length.

Returns: MCB_OK if successful, MCB_SET_ERR if input is ambiguous.
```

```c
int mcb_setConvergenceCriteria (glb_params r)
This function sets the convergence criteria to use for each parameter. The
Monte Carlo will be considered to have converged when
\(R - 1 < r\) for all
parameters (see App. A). The default value for each convergence criteria
is 0.05.

r – A GLoBES parameter vector containing the convergence criteria for
each parameter

Returns: MCB_OK if successful, MCB_SET_ERR if invalid convergence
criteria are given.
```

```c
int mcb_setConvergenceCheck (int N)
This function sets how often the Monte Carlo will check for convergence.
The convergence check will be performed each time this number of new
samples has been produced. The default value for the convergence check
is MCB_CONV_CHECK_ON, i.e., convergence is not checked.

N – The number of samples produced between each convergence check.
Use MCB_NO_CONV_CHECK if convergence should not be checked. The
default, MCB_CONV_CHECK_ON is a large number, mainly intended to
turn the convergence checks on when dynamic burning is used.

Returns: MCB_OK if successful, MCB_SET_ERR if invalid argument is
passed.
```

```c
int mcb_setVerbosity (int N)
This function sets when MonteCUBES will give feedback to stdout. De-
pending on the value set, the user will get different amounts of feedback
(see below).

N – The verbosity level to use according to the following table:
0 or MCB_NO_FEEDBACK: At this level, MonteCUBES gives no feedback to the user.

1 or MCB_ERROR_MESSAGES: This level prints error messages to the screen whenever MonteCUBES discovers something which it is not able to perform (such as setting the maximum number of samples smaller than the minimum number of samples).

2 or MCB_PROGRESSION_BARS: With this verbosity level, MonteCUBES will provide the user with progress bars displaying the progress of various tasks. It will also display the results of convergence checks.

3 or MCB_SIMULATION_INFO: This verbosity level will also make MonteCUBES print various information about the current simulation. This includes information on what it is doing and what is going on in the simulation.

4 or MCB_WARNINGS: The highest level of verbosity. This will display warning messages when the simulations are behaving in a strange way or the user sets strange (but valid) parameter values.

In addition to the feedback described in these verbosity levels, MonteCUBES will also display all messages from lower verbosity levels.

Returns:

int mcb_setVarName (int N, const char* newName)

This function sets the variable name for variable number N. The variable name is used in feedback to the user as well as in the output summary file. The variable names will appear and be used in the MonteCUBES Matlab GUI. The default setting is that the names of the standard parameters is set to a \texttt{\LaTeX} code describing that parameter and that possible extra parameters are named Extra parameter \texttt{<k>}, where \texttt{<k>} is an integer.

\textbf{N} – The internal integer referring to the parameter whose name should be set. For example, this would be \texttt{GLB_THETA_13} if the user wants to set the variable name of $\theta_{13}$

\textbf{newName} – A string containing the new name for the parameter.

Returns:

\texttt{MCB_OK} if the new variable name is set properly. \texttt{MCB_SET_ERR} if the new variable name is too long to fit into the buffers assigned for keeping track of the variable names. \texttt{MCB_ALLOC_ERR} if memory could not be allocated to store the variable name.

int mcb_setTemperature (double newT)
This function sets the temperature to be used in the MCMC simulations. The chains will have to be cooled in order to provide a sample of the true distribution if $\texttt{newT}$ is different from 1.0. The preset value of the temperature is 1.0.

$newT$ – The new temperature to be used in subsequent simulations.

Returns:
- MCB_OK if the temperature is set.
- MCB_SET_ERR if $\texttt{newT}$ is not positive.
- In addition, unless feedback is turned off, this function will give a warning if the temperature is set to less than one.

### int mcb_setStepSizes (const glb_params step)

This function sets the typical step size when performing the Markov Chain Monte Carlo. The Monte Carlo will generate Gaussian steps with standard deviations given by the step sizes.

$\texttt{step}$ – The step sizes to use in the Monte Carlo simulation.

Returns:
- MCB_OK, since the parameter vector will simply be copied.

### int mcb_addStartPosition (glb_params $s$)

This function should be used to add starting positions in parameter space to the Monte Carlo simulation. The actual starting points used will be generated through a step with stepsize three (3) away from the specified starting positions. This function can be called repeatedly. If more than one start position is added, the starting points of different chains will alternate between them. This method must be called at least once before running a MCMC simulation.

$s$ – The parameter vector containing the starting position to be used.

Returns:
- MCB_OK if successful.
- MCB_SET_ERR if the maximum number of starting positions has already been reached.

### int mcb_clearStartPositions ()

This function clears all of the currently stored starting positions from memory. If called, new starting positions will have to be added before a MCMC simulation can be performed.

Returns:
- MCB_OK
CHAPTER 2. THE MONTECUBES C LIBRARY

int mcb_MCMC (char* outfile, int EXP, int RULE)
This is the core function of MonteCUBES. It runs the MCMC and produces output files containing the resulting samplings. The MCMC parameters as well as the GLoBES initiations should be set to the desired values before calling this function.

outfile – A string containing the name of the outfiles to produce excluding the suffix. If set to "out", the outfiles will be named out.mcb, out.mc1, out.mc2, etc.

EXP – Which experiment to use according to the GLoBES standard. Use GLB_ALL for all experiments. This argument is simply passed to the GLoBES $\chi^2$ function.

RULE – Which rule to use according to the GLoBES standard. Use GLB_ALL for all rules. This argument is simply passed to the GLoBES $\chi^2$ function.

Returns:
MCB_OK if executed without problems, MCB_N_ERR if the MCMC has not converged, and MCB_SET_ERR if the step size or starting positions have not been set. MCB_ALLOC_ERR if at some point memory could not be allocated properly.

2.2.2 Advanced usage definitions

MonteCUBES includes several ways of customizing its behavior. Some of these features, such as customizing the way the Metropolis–Hastings algorithm is implemented in the simulation, are beyond the basic usage of MonteCUBES. Nevertheless, the advanced user may want to make these implementations. Thus, MonteCUBES also includes the possibility to do so. The below definitions will allow the user to fully customize the Monte Carlo Markov Chain simulations.

void mcb_toPhysicalRegion (glb_params p, void* udata)

This is the standard MonteCUBES function used to transform an arbitrary set of parameters to the physical region in such a way that the same set of parameters is always used to parametrize the same physical point in parameter space. The method is using setting C3 from Ref. [3] for the definition of the physical region.

p – The GLoBES parameter vector to transform to the physical region.

udata – Not used. No user data input required, passing NULL is sufficient. The argument is provided to comply with the standard for the function mcb_setPhysicalTransformation.
2.2. API DEFINITIONS

Returns: void

int mcb_setPhysicalTransformation (void(*transf) (glb_params, void*), void* udata)

This function defines which transformation that should be used in order to transform a given set of parameters into the physical region. If the user does not set this, or if set to NULL, MonteCUBES will use mcb_toPhysicalRegion.

transf – The transformation used to transform a general glb_params structure into one where the parameters are in the physical region. The first argument is the set of parameters to transform. The second argument is a void pointer which can contain user specified data.

udata – The data to be passed as the second argument to transf whenever it is called.

Returns:
MCB_OK as it will always be possible to set the function and user data pointers. It is up to the user that the transformation works properly.

double mcb_standard_prior (const glb_params in, void* udata)

This function is essentially the same as the standard prior function in GLoBES. It adds priors based on which parameters that are left free according to the current projection. If the input errors have been set to less than $10^{-12}$, then the method does not add a prior. Note! If you are getting nan as a prior value, then you have most probably forgotten to set the density parameters for one or more of in, the central values, or the input errors.

in – The parameter vector for which to compute the prior.

udata – Not used. Provided for compatibility with prior setter functions.

Returns: The prior value at in.

int mcb_setPriorFunction (double (*prior)(glb_params,void*), void* udata)

This function allows the user to set a customized prior function, much like the feature that was introduced into GLoBES 3.0. It is introduced since GLoBES does not allow direct access to the prior function and all GLoBES methods actually using it are minimizers. The value of the prior function will be added to the $\chi^2$ computed with systematics only. If not set before running the MCMC, then Gaussian priors will be used for the free parameters.
prior – The function to use as the prior. Its first argument should be the point in parameter space for which to compute the prior. The second argument is some user data that should be passed along to the prior function.

udata – This is the data that will be passed on to the prior function. This construction avoids the usage of global variables.

Returns:
MCB_OK as it will always be possible to set the function and user data pointers. It is up to the user that the prior function works properly.

int mcb_setRandGenerator (double(*randgen)(void*), void* udata)

This function sets the random generator used by MonteCUBES. By default, MonteCUBES uses a Mersenne twister algorithm. This function provides the possibility of changing this setting.

randgen – The random number generator which should be used by MonteCUBES. This should be a random number generator which returns a random number which is evenly distributed between zero and one.

udata – This is a pointer to data that the user wants to pass on to the random number generator. It will be passed as the argument of randgen when MonteCUBES is generating a random number.

Returns:
MCB_OK as it will always be possible to set the function and user data pointers. It is up to the user that the random number generator works properly.

int mcb_setRandSeed (int s)

This function allows the user to define the seed for the standard random number generator. If the user has not called this function when a simulation is run, the current time will be used as the seed.

s – The seed to use.

Returns:
MCB_OK as it will always be possible to set the seed to a given integer.

int mcb_addDegeneracyStep (glb_params step)

If degeneracies are expected, this function can be used in order to set the expected distance between two degeneracies. With a given probability,
2.2. API DEFINITIONS

the Monte Carlo will then add or subtract this step when computing the test steps so that it is possible to jump between the degeneracies and sample them with the correct weights. See the section on solving degeneracies in App. A for details.

step – The difference vector in parameter space between the degeneracies.

**Returns:**
- `MCB_OK` if successful. `MCB_SET_ERR` if the maximum number of degeneracy steps has been reached.

```c
int mcb_clearDegeneracySteps ()
```

This function clears all the degeneracy steps from memory. This can be useful if running several simulations in the same program and different degeneracies are present in the different simulations.

**Returns:**
- `MCB_OK` as it is always possible to clear the list of degeneracy steps.

```c
void mcb_setDegeneracySteps (glb_params* p, int* ind, int N)
```

This method can be used to set the appropriate degeneracy steps for a given set of degenerate solutions.

- `p` – A `glb_params` array containing the degenerate solutions.
- `ind` – An integer array containing the indices of `p` where the degenerate solutions are located. If all of the entries in `p` should be used, then `ind[k]` is equal to `k`.
- `N` – The total number of degenerate solutions to set (i.e., the length of `ind`).

**Returns:**
- `void` 

```c
int mcb_readDegeneracySteps (char* file)
```

This method can be used to read the output file of the degeneracy locator (containing the degenerate solutions). It then sets the appropriate degeneracy steps for these solutions using `mcb_setDegeneracySteps`.

- `file` – The name of the file to read. It should be the output of the degeneracy locator.
CHAPTER 2. THE MONTECUBES C LIBRARY

Returns:

MCB_OK if the degeneracy steps are set properly. MCB_IO_ERR if the file could not be read. MCB_SET_ERR if there were too many degeneracies to fit the steps into the memory allocated to degeneracy steps by MonteCUBES. MCB_ALLOC_ERR if the memory to store the degeneracy steps could not be allocated.

```
int mcb_TdegFinder (double Th, double Tl, int NT, int Nsamp, int exper, int rule, double maxChi2, int set, char* outfile)
```

This is the degeneracy locator currently implemented in MonteCUBES. It scans the parameter space for degeneracies by starting a number of chains at a high temperature and then gradually lowering the temperature (see App. A.3 for details).

Th – The starting temperature. Should be set to a sufficiently high value so that the degeneracies are merged.

Tl – The end temperature. Should be set to a low value so that the chains settle into local minima.

NT – The total number of temperatures to run the chains at.

Nsamp – The total number of chains to run. This should be fairly large to decrease the probability of missing a degenerate solution.

exper – The experiment for which to find the degeneracies. Passed on to the computation of the $\chi^2$.

rule – The rule for which to find the degeneracies. Passed on to the computation of the $\chi^2$.

maxChi2 – The maximal $\chi^2$ difference for which to include degeneracies. Final results $\chi^2$ larger than $\chi^2_{min}$ plus this value will be ignored.

set – Flag for declaring if the finder should also set the degeneracy steps using mcb_setDegeneracySteps. Set to 0 if the steps should not be set and 1 if they should.

outfile – The name of the file in which to store the final results. Only results belonging to different local minima will be stored.

Returns:

MCB_OK if run properly. MCB_SET_ERR if the step sizes or starting positions are not properly defined. MCB_ALLOC_ERR if at some point memory could not be allocated properly.
2.2. API DEFINITIONS

int mcb_setDegeneracyStepProbability (double p)

This function sets the probability with which a degeneracy step is taken. The probability is the total probability of taking any of the stored degeneracy steps, i.e., if there are \( n \) degeneracy steps and the probability is \( p \), then the probability for each step is \( p/n \).

- \( p \) – The probability of taking a degeneracy step.

**Returns:**
- **MCB_OK** if the probability is set. **MCB_SET_ERR** if \( p \) is not between 0 and 1.

int mcb_setStepProposalFunction (double (*proposal)(const glb_params, const glb_params, const int*, const int*, int, int, double*, double, glb_params, void*), void* udata)

This function sets the function that determines what test step to use in the Monte Carlo based on the current step and other simulation parameters. The function is set to `proposal`, which must be a function taking ten (10) arguments as follows (see App. A.1 for the Monte Carlo theory notation):

1. `const glb_params`: The current step \( x_n \) in the simulation.
2. `const glb_params`: The typical step sizes to use in the simulation, i.e., the ones set by `mcb_setStepSizes`.
3. `const int*`: An integer array with flags notifying if a parameter should be free in the simulation or not (1 for free, 0 for fixed).
4. `const int*`: An integer array with flags notifying if a density should be free in the simulation or not (1 for free, 0 for fixed).
5. `int`: The number of free parameters \( N_f \) in the simulation (i.e., the number of ones in argument 3).
6. `int`: The number of free densities \( N_d \) in the simulation (i.e., the number of ones in argument 4).
7. `double*`: A double array containing Gaussian random numbers with variance 1. The size of the array is \( N_f+N_d \).
8. `double*`: A parameter denoting the relative step size. This will be one in the simulation, but the starting samples in the simulation will be determined from taking a step with a larger step size. In addition, the temperature lowering degeneracy locator uses different step sizes for different temperatures.
9. `glb_params`: This is where the new proposed sample \( \hat{x} \) should be stored.
10. `void*`: This argument can contain user defined data. The user data passed to `mcb_setStepProposalFunction` is passed in this argument.
Note that the user does not need to use all of these arguments in the function. For example, if the user wants to construct a simulation using transition functions which do not depend on the current step, argument 1 will not be used. However, the definition of the function should have this structure.

**proposal** – The function to use in order to generate new test steps.

**udata** – User defined data to be passed along to **proposal**.

**Returns:**

*MCB_OK* as it will always be possible to set the function and user data pointers. It is up to the user to ensure that the function works properly.

```c
int mcb_setTransitionRatioFunction (double (*ratio)(const glb_params, const glb_params, const glb_params, const int*, const int*, int, int, double, void*), void* udata)
```

If **mcb_setStepProposalFunction** is used to set the proposal function to an asymmetric function (i.e., \( W(\hat{x} \to x_n) \neq W(x_n \to \hat{x}) \)), then this will affect the acceptance criteria that should be used in the Metropolis–Hastings algorithm. This method is used to implement this change of acceptance criteria and sets the function that is used to compute the ratio \( \frac{W(\hat{x} \to x_n)}{W(x_n \to \hat{x})} \). If this method is not called, or \( \text{ratio} \) is **NULL**, then it will be assumed that the ratio is 1. The function **ratio** should take nine (9) arguments according to the following specification (see App. A.1 for the Monte Carlo theory notation):

1. **const glb_params**: The current step \( x_n \) in the simulation.
2. **const glb_params**: The proposed new step \( \hat{x} \) in the simulation.
3. **const glb_params**: The step sizes used in the simulation.
4. **const int****: An integer array with flags notifying if a parameter should be free in the simulation or not (1 for free, 0 for fixed).
5. **const int****: An integer array with flags notifying if a density should be free in the simulation or not (1 for free, 0 for fixed).
6. **int**: The number of free parameters \( N_f \) in the simulation (i.e., the number of ones in argument 4).
7. **int**: The number of free densities \( N_d \) in the simulation (i.e., the number of ones in argument 5).
8. **double**: A parameter denoting the relative step size. This will be one in the simulation, but the starting samples in the simulation will be determined from taking a step with a larger step size.
9. `void*`: This argument can contain user defined data. The `udata` passed to `mcb_setTransitionRatioFunction` is passed in this argument.

The parameters passed to this function will essentially be the same as those passed to the step proposal function (except the proposed new step, which is the output of the step proposal function, and the random number array, which is not needed).

`ratio` – The function to use to compute $W(\hat{x} \rightarrow x_n)/W(x_n \rightarrow \hat{x})$. If `NULL`, the ratio will be set to 1.

`udata` – User defined data to be passed to `ratio`.

**Returns:**
- `MCB_OK` as it will always be possible to set the function and user data pointers. It is up to the user to ensure that the function works properly.

`int mcb_setExplicitRuleRates (int exper, int rule, char* file)`

Using this method, it is possible to set the rule rates of any experiment and rule to user defined values. The rule rates are then used by GLoBES to compute the $\chi^2$ function. The main usage of this method is to input real or simulated results from an experiment and compute the $\chi^2$ using these instead of the ones computed by GLoBES. In order for this method to work properly, it must be called after `glbSetRates`. If this is not the case, the memory storage for the rule rates will not have been allocated by GLoBES. However, what input values that are used for the `glbSetRates` does not matter when computing the $\chi^2$ if the rule rates have been set using this method.

`exper` – The index of the experiment for which to set the rule rates.

`rule` – The rule for which to set the rates.

`file` – A file containing the rates to set. The file should contain rates separated by whitespace characters or linebreaks (the method uses `fscanf` with the pattern "%f" to scan the file for each bin). The file must contain as many rates as the `exper` has bins.

**Returns:**
- `MCB_OK` if the file was readable. `MCB_IO_ERR` if it was not.

`int mcb_setSimulatedRuleRates (int exper, const glb params in)`
CHAPTER 2. THE MONTECUBES C LIBRARY

Using this method, it is possible to set the rule rates of any experiment to Poisson distributed random numbers with mean values given by the prediction of oscillation parameters in. The rule rates are then used by GLoBES to compute the $\chi^2$ function. The main usage of this method is to simulate results from an experiment and compute the $\chi^2$ using these instead of the ones computed by GLoBES. Thus, this can be used to perform an actual Monte Carlo determination of the confidence belts, rather than relying on the test statistic actually taking a $\chi^2$ distribution. Only the rates for `exper` will be changed.

`exper` – The index of the experiment for which to set the rule rates. Use GLOB.ALL to set rule rates for all experiments.

`in` – The parameters to be used to predict the mean values of the Poisson distributions used.

**Returns:**
- `MCB_OK` if successful. `MCB_IO_ERR` if it was not.

```c
int mcb_addOutDataFunction (double(*fcn)(glb_params), const char* fcnName)
```

This method can be used to add an arbitrary function of the oscillation parameters to the output files. From the perspective of the output files, the value of the function is treated as an extra parameter and is added after all other parameters.

`fcn` – The function of the oscillation parameters to add to the output files.

`fcnName` – The name of the function to use in the summary file.

**Returns:**
- `MCB_OK` if the function was added. `MCB_SET_ERR` if too many out data functions have already been added, or `MCB_ALLOC_ERR` if memory to store the function could not be allocated.

```c
int mcb_clearOutDataFunctions ()
```

This method clears all of the out data functions set by `mcb_addOutDataFunction`.

**Returns:**
- `MCB_OK` as the clearing will always be possible.
2.3. DEFINITIONS OF OUTFILES

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nchain</td>
<td>Number of chains</td>
</tr>
<tr>
<td>Npar</td>
<td>Number of parameters</td>
</tr>
<tr>
<td>r</td>
<td>Convergence criteria</td>
</tr>
<tr>
<td>free</td>
<td>Flags for free parameters</td>
</tr>
<tr>
<td>Nburn</td>
<td>Length of burn-in</td>
</tr>
<tr>
<td>Nmin</td>
<td>Minimum chain length used</td>
</tr>
<tr>
<td>Nmax</td>
<td>Maximum chain length used</td>
</tr>
<tr>
<td>time</td>
<td>Time elapsed during simulation</td>
</tr>
<tr>
<td>Nsamp</td>
<td>Number of samples produced</td>
</tr>
<tr>
<td>start_values</td>
<td>Starting values for the parameters</td>
</tr>
<tr>
<td>step_size</td>
<td>Typical step size used in simulation</td>
</tr>
<tr>
<td>Npoint</td>
<td>Number of distinct samples</td>
</tr>
<tr>
<td>varNames</td>
<td>Variable names</td>
</tr>
<tr>
<td>T</td>
<td>Temperature used in simulation</td>
</tr>
</tbody>
</table>

Table 2.1: The structure of the summary files (// and text thereafter is not written in the files). Each line except Npoint and varNames (see text) represents a new line in the summary file.

2.3 Definitions of outfiles

An important part of the MonteCUBES interface is the creation of files storing the samplings produced by the MCMC, and we will refer to them as the raw sampling files. This is the output of the MonteCUBES C library and the input of the MonteCUBES Matlab GUI. If you are planning to use both of these, you can most probably skip this section, since the Matlab GUI will take care of reading and interpreting the raw sampling files for you. However, if you are planning to create your own method of plotting the results, or if you want to search for irregularities within the samplings, this section describes the structure of the raw sampling files.

There are two types of raw sampling files, the summary files and the chain files. Each of these are described in subsections below.

2.3.1 Summary files

For each MCMC simulation, a summary file will be created. This file contains general information about the MCMC simulation, such as which parameters that were used, the duration of the simulation, how many samples were produced, etc. The summary file will be named `<name>.mcb`, where `<name>` is the outfile argument passed to the MCMC (see Sec. 2.2).

In Tab. 2.1, we give the structure of the summary files. The entries of this table should be interpreted in the following way:

- Nchain – The number of chains produced in the simulation.
- Npar – The number of parameters used in the simulation.
r – The convergence criteria put on the parameters. This consists of $N_{\text{par}}$ numbers, one for each parameter.

*free* – Flags denoting which parameters that were allowed to vary during the simulation. This consists of $N_{\text{par}}$ numbers, where 0 denotes that the parameter was fixed and 1 that it was allowed to vary.

$N_{\text{burn}}$ – The number of samples per chain that were not considered in the convergence criteria.

$N_{\text{min}}$ – The minimum number of samples per chain that the MCMC was told to produce after burn-in.

$N_{\text{max}}$ – The maximum number of samples per chain that the MCMC was told to produce after burn-in.

time – The running time (in seconds) of the MCMC simulation.

$N_{\text{samp}}$ – The actual number of samples produced per chain by the MCMC simulation after burn-in.

*start values* – The typical start value of the chains. This line contains $N_{\text{par}}$ numbers, one for each parameter. The actual starting values for the chains are chosen by taking a random step away from these values (this step is three times larger than the random steps taken during the MCMC). If more than one start position have been used, then this is the first of the start positions to be stored in memory.

*step size* – The typical step sizes for the different parameters. This line contains $N_{\text{par}}$ numbers, one for each parameter.

$N_{\text{point}}$ – This actually represents $N_{\text{chain}}$ different lines. The lines contain the number of distinct samples in the different chains (starting with chain 1). This number includes the burn-in samples and should equal the number of lines in the corresponding chain files.

*varNames* – This represents $N_{\text{par}}$ different lines. Each line contains the name of one of the variables used in the simulations within quotation marks. The MonteCUBES Matlab GUI will display these variable names.

$T$ – This is a single decimal number containing the temperature used in the simulation. This must be known in order to cool the chain properly.

### 2.3.2 Chain files

The chain files contain the actual samples created in the MCMC simulations. Unlike the summary files, several chain files will be produced by the same MCMC run (unless only one chain is used). The naming convention for the summary files is $<\text{name}.mc<n>$, where $<\text{name}>$ is the `outfile` argument passed to the MCMC (see Sec. 2.2) and $<n>$ is the chain number. Thus, a MonteCUBES
simulation using three chains and specifying out as the filename would produce
the files out.mcb, out.mc1, out.mc2, and out.mc3. Since the summary files
and chain files have the same names (up to the suffixes), it is easy to tell which
chain files have been created from reading the summary file.

The chain files contain all of the samples produced in the MCMC simulation,
including the burn-in samples. However, in order to make the file size smaller,
the chain files only store each sample once along with a number indicating how
many times that point was sampled before leaving. Each line of a chain file has
the following structure:

\[
\text{chi2 N par}
\]

The interpretation of this is:

- \text{chi2} – The value of the $\chi^2$ function for this sample.
- \text{N} – The number of times this point was sampled by the MCMC.
- \text{par} – A list of \text{Npar} (see the summary file description) numbers representing the
different parameter values.

### 2.4 Examples

#### 2.4.1 Simulation of the ISS neutrino factory

Table 2.2 contains a typical example program designed to simulate the ISS neu-
trino factory [4]. Do not worry if you find the font too small, we will go through
each line of code separately. This example is essentially how you would con-
struct a \texttt{MonteCUBES} simulation without caring too much about implementing
new physics, priors, or degeneracies.

Let us start from the beginning of the code with the \texttt{#include} statements:

```c
#include <math.h>
#include <globes/globes.h>
#include <montecubes/montecubes.h>
```

As you will notice, there is essentially nothing strange in these lines. We need
\texttt{math.h} to tell us about \texttt{M_PI}, \texttt{globes.h} to have access to the \texttt{GLoBES} functions,
and \texttt{montecubes.h} in order to use the functions introduced by \texttt{MonteCUBES}.

If you are unfamiliar with C programming, the \texttt{main} function is the function
that is called when you run the binary executable file that is constructed by the
compiler. Thus, we will not explain its syntax in any detail as this can be found
in any tutorial on C programming. Instead, we simply focus on the instructions
within, which are executed when the binary is. The first statements, \textit{i.e.},

```c
double theta12 = 33.21*\texttt{M_PI}/180;
double theta13 = 0*\texttt{M_PI}/180;
double theta23 = 45*\texttt{M_PI}/180;
double deltacp = \texttt{M_PI}/2;
```
#include <math.h>
#include <globes/globes.h>
#include <montecubes/montecubes.h>

int main(int argc, char *argv[]){
    double theta12 = 33.21*M_PI/180;
    double theta13 = 0*M_PI/180;
    double theta23 = 45*M_PI/180;
    double deltacp = M_PI/2;
    double sdm = 8.0e-5;
    double ldm = 2.5e-3;
    double r = 0.025;

    glbInit(argv[0]);
    glbInitExperiment("ids-baseline.glb", &glb_experiment_list[0], &glb_num_of_exps);

    glb_params true_values = glbAllocParams();
    glb_params start_values = glbAllocParams();
    glb_params steps = glbAllocParams();
    glb_params convcrit = glbAllocParams();
    glb_params input_errors = glbAllocParams();
    glb_projection pro = glbAllocProjection();

    glbDefineParams(true_values, theta12, theta13, theta23, deltacp, sdm, ldm);
    glbSetDensityParams(true_values, 1.0, GLB_ALL);
    glbSetOscillationParameters(true_values);
    glbSetRates();
    glbSetCentralValues(true_values);
    glbCopyParams(true_values, start_values);
    glbDefineParams(input_errors, 0.04*theta12, 0, 0.1*theta23, 0, 0.04*sdm, 0.1*ldm);
    glbSetDensityParams(input_errors, 0.02, GLB_ALL);
    glbSetInputErrors(input_errors);
    glbDefineProjection(pro, GLB_FREE, GLB_FREE, GLB_FREE, GLB_FREE, GLB_FREE, GLB_FREE);
    glbSetDensityProjectionFlag(pro, GLB_FREE, GLB_ALL);
    glbSetProjection(pro);

    int m;
    for(m = 0; m < glbGetNumOfOscParams(); m++)
        glbSetOscParams(convcrit, r, m);
    glbSetDensityParams(convcrit, 1.0, GLB_ALL);
    mcb_setConvergenceCriteria(convcrit);
    glbCopyParams(true_values, steps);
    glbDefineParams(steps, 0.005*theta12, 0.005*theta23, 0.2*M_PI, 0.005*sdm, 0.005*ldm);
    glbSetDensityParams(steps, 0.02, GLB_ALL);
    mcb_setBurnNo(MCB_DYNAMIC_BURN);
    mcb_setLengthMax(10000000);
    mcb_setLengthMin(20000);
    mcb_setConvergenceCheck(10000);
    mcb_setStepSizes(steps);
    mcb_addStartPosition(start_values);
    mcb_MCMC("idsres", GLB_ALL, GLB_ALL);
    glbFreeParams(true_values);
    glbFreeParams(convcrit);
    glbFreeParams(start_values);
    glbFreeParams(input_errors);
    glbFreeParams(steps);
    glbFreeProjection(pro);
}

Table 2.2: MonteCUBES C source code for simulating the ISS neutrino factory.
2.4. EXAMPLES

double sdm = 8.0e-5;
double ldm = 2.5e-3;
double r = 0.025;

are simply declarations of variables that we will use later on in our program. You will recognize the first six values as neutrino oscillation parameters, with $\theta_{13}$ set to zero and the other parameters according to the ISS neutrino factory simulation definitions. The last parameter, $r$, is a parameter that we will use to set the convergence criteria for our Markov Chains. A smaller value would imply more stringent convergence criteria (this value is already quite stringent).

We now move on to initializing GLoBES and the experiments we want to use. This is done through the statements:

```c
 glbInit(argv[0]);
 glbInitExperiment("ids-baseline.glb",
 &glb_experiment_list[0],&glb_num_of_exps);
```

The first of these statements initializes GLoBES (see the GLoBES manual for details. The second tells GLoBES that we want to use ids-baseline.glb as the AEDL file, which contains a description of the ISS neutrino factory setup.

Once GLoBES has been initialized, we need to define the parameter vectors we are going to use, as well as allocate memory where the parameter vectors can be stored. We also need to define a projection which will tell MonteCUBES what parameters it should be changing in the Markov Chains. Out of the six statements

```c
 glb_params true_values = glbAllocParams();
 glb_params start_values = glbAllocParams();
 glb_params steps = glbAllocParams();
 glb_params convcrit = glbAllocParams();
 glb_params input_errors = glbAllocParams();
 glb_projection pro = glbAllocProjection();
```

the first five declare and allocate memory to parameter vectors, while the last statement declares and allocates memory to a projection. The five parameter vectors we will use are:

**true_values** – We will use these values to set the event rates. They correspond to the values we assume have been realized in Nature.

**start_values** – These are parameter values at which we will start the Markov Chains. The first sample in the Markov Chains will be given by a rather large step (three times the normal step size) away from this value.

**steps** – We will use this parameter vector to store the typical step sizes that we want to use in the Markov Chains. The steps will be Gaussian with these values as standard deviation.
**convcrit** – This parameter vector stores the convergence criteria. Thus, we can in principle set different convergence criteria for different parameters, although we will not do this in this example.

**input_errors** – As in standard GLoBES programs, we will need to set the input errors that should be used by the prior functions. This parameter vector will be used to store these errors.

It is now time to set the event rates that would be expected given that the neutrino oscillation parameters take the values we declared in the beginning of the main function. This is done through the statements:

```c
 glbDefineParams(true_values,theta12,theta13,
 theta23,deltacp,sdm,ldm);
 glbSetDensityParams(true_values,1.0,GLB_ALL);
 glbSetOscillationParameters(true_values);
 glbSetRates();
 glbSetCentralValues(true_values);
```

The first line sets the values stored in `true_values` to the neutrino oscillation parameters from the beginning of the main function. The second line tells GLoBES that the matter density along the baselines are supposed to be the same as those defined in the AEDL files used. In the third line, the neutrino oscillation parameters that should be used to compute rates is set to `true_values`. Finally, in the fourth line, we tell GLoBES to set the event rates of all experiments to the ones that would be expected if the neutrino oscillation parameters were those in `true_values`. Finally, we will also use the `true_values` as the central values when computing the priors, which is what is accomplished by the fifth line. We will also use these same values as the starting values of our Markov Chains, thus we simply copy the parameter vector by the statement:

```c
 glbCopyParams(true_values,start_values);
```

In order to compute the prior properly, we also need to define the input errors. The following three statements defines the input errors to the values specified in the ISS neutrino factory simulation and tells GLoBES to use these values to compute the prior:

```c
 glbDefineParams(input_errors,0.04*theta12,0,0.1*theta23,
 0,0.04*sdm,0.1*ldm);
 glbSetDensityParams(input_errors,0.02,GLB_ALL);
 glbSetInputErrors(input_errors);
```

As mentioned earlier, we will also need to tell the Monte Carlo which parameters that should be allowed to vary in the simulation. To this end MonteCUBES will use the projection which is currently set in GLoBES. Thus, it can be set as:

```c
 glbDefineProjection(pro,GLB_FREE,GLB_FREE,GLB_FREE,
 GLB_FREE,GLB_FREE,GLB_FREE);
 glbSetDensityProjectionFlag(pro,GLB_FREE,GLB_ALL);
 glbSetProjection(pro);
```
2.4. EXAMPLES

The first line sets all neutrino oscillation parameters free in the simulation, while the second line does the same for the matter densities. Finally, the last line tells GLoBES to use this projection.

It is now time to start worrying about what we put into the Monte Carlo simulation. An important part of this is telling it how well the chains should have converged before the Monte Carlo is terminated. This is done through the following code:

```c
int m;
for(m = 0; m < glbGetNumOfOscParams(); m++)
 glbSetOscParams(convcrit, r, m);
 mcb_setConvergenceCriteria(convcrit);
```

To start with, `m` is simply declared, since we will need it as a loop variable. The `for` loop simply sets the convergence criteria for all oscillation parameters to `r`, which was defined in the beginning of the program. Note that we could just as well have used the `glbDefineParams` here as well. However, this `for` loop would be sufficient also if we had used a user defined probability engine with more parameters (see the GLoBES manual). Finally, the last statement tells MonteCUBES to use these values as the convergence criteria.

Another just as important thing to tell the Monte Carlo is how big steps it should be taking. To this end, we have defined the `steps` parameter vector, which will be passed to the function starting the simulation. We simply need to put the typical step length into the vector using standard GLoBES commands:

```c
 glbDefineParams(steps, 0.005*theta12, 0.0025,
 0.005*theta23, 0.2*M_PI, 0.005*sdm, 0.005*ldm);
 glbSetDensityParams(steps, 0.02, GLB_ALL);
```

The typical step length that should be used is about the one standard deviation that we expect. If the step length is too small, the Monte Carlo will take more time to converge. If it is too large, then the sampling of the parameter space will be bad as the chains will get stuck in the same point for a long time.

It is now time to set options for the Monte Carlo that we do not wish to be put to their defaults. Here, we use four examples:

```c
 mcb_setBurnNo(MCB_DYNAMIC_BURN);
 mcb_setLengthMax(10000000);
 mcb_setLengthMin(2000);
 mcb_setStepSizes(steps);
 mcb_addStartPosition(start_values);
```

The first line tells the Monte Carlo to use dynamic burning (to read more about the burn-in process, see App. A). This means that the Monte Carlo will initially produce chains with twice the number of samples as the minimum chain length. If the last half of the chain does not fulfill the convergence criteria, then the Monte Carlo doubles the number of samples and use the earlier chain as burn-in. This continues until the last half of the chain has reached convergence or...
the maximum chain length has been reached. The following two lines set the maximum and minimum length of the chains to $10^7$ and 2000, respectively. An equivalent statement would be:

```c
mcb_setLengthMinMax(2000, 10000000);
```

Since we are using dynamic burning, the initial burn-in will be 2000 samples and another 2000 samples will be produced before checking convergence. The following line sets the typical step size to use in the Monte Carlo to the `steps` parameter vector, while the last line adds a nominal starting value for the chains. The chains will then actually be started from points which are one step away from this value (with a step size of three).

It is now time to start our Monte Carlo simulation. This is done by the statement:

```c
mcb_MCMC("idsres", GLB_ALL, GLB_ALL);
```

The first argument is a string which constitutes the base for the output filenames (see the separate section on output files). The two final arguments will be passed to the $\chi^2$ function of GLoBES and represent which of the defined experiments and rules that we wish to use. Since we want to use all of the experiments and rules defined in the AEDL files, we use `GLB_ALL`.

Finally, the Monte Carlo has been run and it is time to end the program. It is good practice to free the memory allocated in the program, even though the program will terminate immediately afterwards. Therefore, we end our program with:

```c
glbFreeParams(true_values);
glbFreeParams(convcrit);
glbFreeParams(start_values);
glbFreeParams(input_errors);
glbFreeParams(steps);
glbFreeProjection(pro);
```

### 2.4.2 Treating degeneracies

An important aspect of future neutrino oscillation searches is the appearance of degeneracies. In general, if the degeneracies are well-separated and the starting point is close only to one of the degenerate solutions, then all chains will fall into that degenerate solution with a miniscule probability of ever jumping to another of the degenerate solutions unless simulations run for about the age of the Universe.

On the other hand, if the starting point is located in such a way that chains fall into different degeneracies, the low probability of changing minimum for a chain will result in chains with very bad convergence criteria.

In order to solve the problem with degeneracies, MonteCUBES includes a procedure for sampling all of the degeneracies in the same simulation and with
appropriate weights. This is implemented by the possibility of adding degeneracy steps to the simulation. Essentially, a degeneracy step is a constant step in parameter space describing the distance between two degeneracies. The inclusion of a degeneracy step can be viewed as digging a tunnel between the degeneracies so that the Monte Carlo chains do not have to cross the large barrier between them in order to sample them both. For details on how this works, see App. A. In this section, we will make an example of how to search for degeneracies and resolve them using the MonteCUBES C library. The example will be continued in the next chapter, where we will display the results using the MonteCUBES Matlab GUI. Appendix A also includes a description of a gradual temperature lowering algorithm to find the different degenerate solutions. Also this algorithm is implemented in MonteCUBES and, for illustration, we will use it to find the degeneracies automatically (even if we know where the degeneracies are located).

First of all, in order to need the degeneracy solver, we need an experimental setup which has degeneracies. In particular, in order to demonstrate the efficiency of the degeneracy resolution, we choose the following experimental setup with only the \( L = 2000 \) km detector from Ref. [5].

The above setup has a twofold degeneracy which shows up at different values for \( \theta_{13} \) and \( \delta \) and a sign change of \( \Delta m_{31}^2 \). Since the two degeneracies are located in different mass hierarchies, there is a huge barrier between them and the chains have to pass \( \Delta m_{31}^2 = 0 \) (essentially the no-oscillation region) in order to jump between the degeneracies. Additionally, the degenerate solution is not a perfect fit and it should be sampled slightly less often than the true solution. Thus, testing this setup will also show that the degeneracy step solution is able to reproduce the different solutions with the appropriate weights.

In principle, the degeneracy finder is a Markov Chain Monte Carlo by itself. Thus, in order to run it, the user must specify the same parameters before running it as if running the main method of MonteCUBES (such as step sizes). The degeneracy finder is then run by a command similar to:

\[
\text{mcb\_TdegFinder}(1000.0, 0.01, 10, 20, \text{GLB\_ALL, GLB\_ALL, 20.0, 1, "degLocs.mcd"});
\]

Here, the chains are started at a temperature of \( T_h = 1000 \) and gradually cooled to \( T_l = 0.01 \), the number of temperature steps is ten and the number of chains tried is 20. The GLB\_ALL arguments tells the degeneracy finder to use all experiments and rules, the 20.0 is the maximum value of the \( \chi^2 \) which should be considered a degenerate solution, the 1 tells the degeneracy finder to automatically set the degeneracy steps using the function \text{mcb\_setDegeneracyStep}, and the final string "degLocs.mcd" is the name of the file into which the degenerate solutions are stored.

Since it can take some time to run this method, it may be advisable to run it only once (assuming that the experimental setup does not change), and instead use

\[
\text{mcb\_readDegeneracySteps("degLocs.mcd")};
\]
in subsequent runs of the program. This will simply load the degeneracies stored in `degLocs.mcd` and set the correct degeneracy steps.

Once the appropriate degeneracy steps have been set, the usual Markov Chain Monte Carlo can be run as described in the previous example.
Chapter 3

The MonteCUBES Matlab GUI

In this chapter, we will describe the MonteCUBES Matlab GUI and how to use it. In order to do so, we will use the results from the examples in the previous chapter. The GUI will be presented on an example basis in which we use it to produce the different plots and explain the features as we go along.

3.1 Starting the GUI and reading simulation results

In order to start the MonteCUBES Matlab GUI, you should first start Matlab and make sure that the GUI code is located in the current directory (the GUI code is distributed in the sub-directory `matlab` of the MonteCUBES distribution). Once this is the case, the GUI can be started by simply typing `MonteCUBES` in the command window.

The GUI will then start up in a new window in a state reminiscent of that in Fig. 3.1. The startup appearance of the GUI show only the most basic features, simply because no simulation results have been read, which naturally means they cannot be plotted. The main features of the window are the following:

- The Open `.mcb` button. Since you just started the GUI, this is probably the feature you want to use. Pressing the button will provide you with a file dialog asking you which `.mcb` file you wish to open. The read process will be described below. This button will always be visible in the GUI.

- The Exit button. This button is fairly self-explanatory. Pressing it will simply close the GUI window. It will always be visible in the GUI.
CHAPTER 3. THE MONTECUBES MATLAB GUI

Figure 3.1: The MonteCUBES Matlab GUI at startup and after reading simulation results.

- The Burn length field. This field is specific to the startup appearance of the GUI. By default, the GUI will get the information on the burn length from the summary file. However, if the user inputs a number into this field, it will be used instead of the pre-defined burn-length.

- The Simulation summary. Since no simulation files have been opened, this part currently displays no information. However, when a simulation has been read, it will provide general information about the simulation and its results. This part of the GUI is always visible.

- The Feedback area. The feedback area should currently display a message saying “Welcome to the MonteCUBES GUI”. Additional messages will appear in the feedback area as the GUI is used. The feedback area is always visible.

Once the GUI has been started, it must be provided with the output from the simulation of which it should produce high-level information, such as contour plots. As just hinted above, this is done by pressing the Open.mcb button. The user will then be provided with a file dialog in order to select the summary file of the simulation. The GUI will then start by reading the summary file in order to get the basic information about the simulation as well as to deduce what chain files to read. It is assumed that the chain files (see Sec. 2.3) are located in the same directory as the summary file.

If the Burn length field is left blank, then the GUI will read the simulation files assuming that the burn length is the same as the one provided in the summary file. However, if the burn length field evaluates to a positive integer, this will override the burn length in the summary file. Regardless of which, the chain
files will be read into the GUI with the given burn length and information on the convergence of the chains will be written to the feedback area. In addition, the information from the summary file is also stored by the GUI and the simulation summary provides basic information on the currently loaded simulation.

Once a simulation has been loaded, the Plot chains button will appear. If the user is satisfied with the simulation that has been loaded, pressing this button will make the GUI proceed to plotting mode, where a number of different plots can be produced from the loaded data. If the user wants to load a different file, or use a different burn length, this can be done by pressing the Open .mcb button again. In addition, the Add new .mcb button provides the user with the possibility of joining the chains from different simulations. This will append the results of the second simulation with those from the first. Several checks will then be made (such as checking that the same parameters are free in both simulations) and the user will be notified in the feedback window if anything is strange.

In Fig. 3.1, and for most of this manual, we are using the simulation files resulting from running the program presented in Sec. 2.4.1. In the end of this chapter, we will switch to the results from Sec. 2.4.2.

## 3.2 Making plots

After deciding to plot the loaded simulation by pressing the plot chains button, the GUI will change in appearance to look like Fig. 3.2. The GUI now contains several new elements:
• The **GUI mode** selector. This sets the graphical mode of the GUI and can be set to *Simple* or *Advanced* (the default). If set to *Simple*, a lot of the GUI controllers will be hidden and default values used (except for the filter parameter, which will be set to one). The simple mode can be useful for the user who only wants to plot simulation results with as little effort as possible, although we recommend to use the advanced setting in order to take full advantage of the MonteCUBES capabilities.

• The **Make figure** button. Pressing this button will produce a new figure according to the current state of the GUI.

• The **Export data** button. This button will save the data necessary to produce a plot according to the current state of the GUI. The user will be provided with a file dialog in order to choose where to save the data. The structure of the output file depends on the type of graph that should be produced. This option is not available for the triangle and 3D surface plots, see below.

• The **Clear figure** button. Fairly self explanatory, this button will clear the figure currently indicated in the **Figure** parameter field (see below). If the Figure parameter field is empty, this button has no effect.

• The **Graph type** selector. This drop-down menu provides the user with a number of different plot types which can be produced by the GUI. The visual appearance of the GUI will depend on the graph type that is actually selected.

• One or more **parameter fields**. Just right of the graph type selector, a number of parameter fields will appear depending on the selected graph type. For example, the **Figure** field will always be present and is used to tell the GUI in which figure to plot the results when pressing the make figure button. If the figure field is empty, then the results will be plotted in a new figure. Other parameter fields may be specific to each graph type and will be explained along with the graph types.

• One or more **variable rows**. Depending on the dimensionality of the selected graph type, a number of variable rows will appear (*i.e.*, a plot requiring one variable displays one variable row and so on). Each variable row contains the following elements, which are only visible in the cases where they affect the resulting plot:
  
  – **Variable**: The drop-down menu to the left can be used to pick what variable to use for this dimension of the plot. It contains all of the variable names from the simulation summary file, as well as the variable number used to represent the parameter in the transformation field (see below).
  
  – **Min**: The minimum variable value to use when a plot is produced. If left blank, the default value is the minimum value of the variable in the simulation.
3.2. MAKING PLOTS

- *Max*: The maximum variable value to use when a plot is produced. If left blank, the default value is the maximum value of the variable in the simulation.

- *Bins*: The number of bins in which to divide this variable if the graph type is such that binning is needed. If left blank, this defaults to 30.

- *Transformation*: This is an arbitrary transformation of variables that may be applied to the simulated values. A transformation should be written in such a way that it is a *Matlab* function of variables $P_1$, $P_2$, $\ldots$, each referring to one of the simulation parameters. Furthermore, it should be written in such a way that its result is a vector if the variables are vectors (i.e., if the transformation should be such that $P_1$ and $P_2$ are multiplied, the transformation should be $P_1 \cdot P_2$ rather than $P_1 * P_2$). This allows the user to use any combination of parameters as the variables of the plots. The variable resulting from this transformation is the variable that will actually be used in the plots. If this field is left blank, then the variable chosen in the variable drop-down menu will be used. See below for examples.

*Note!* Unless the full transformation used has a jacobian of one, this will effectively change the prior used in the simulation. In the graph types where this matters, it can be counteracted by the use of a weight function.

- *Boundary cond.*: This is a drop menu which is used in order to set the boundary conditions of the filtering functions. There are four different options:

1. *Zero padded*. With this boundary condition set, the GUI assumes that any bins outside of the original grid of bins contain zero samples.

2. *Constant continuation*. This boundary condition means that the GUI will assume that the last bins in the original grid are repeated infinitely (i.e., for the whole reach of the filter).

3. *Cyclic*. With a cyclic boundary, the GUI assumes that the continuation of a boundary is given by the bins on the opposite boundary. This is useful for complex phases and other cyclic parameters which are plotted within a full period.

4. *Mirrored*. The mirroring boundary condition makes the GUI assume that the bins are mirrored in the boundary.

This only affects the plots where filters are applied. If a two- or three-dimensional graph type is chosen, there will also be *Variable switch* buttons between the variable rows. Pressing such a button will exchange the values in the two variable rows adjacent to it.

- The *Clear* button. Pressing this button will clear all of the text fields in the variable row.
3.2.1 1D histogram plots

The one-dimensional histogram plots simply divides the plotting interval into bins, counts the number of samples in each bin, and uses the result to produce a histogram. An example of this is shown in Fig. 3.3. The figure also shows the state of the GUI that was used to produce it. Note that the transformation of $\theta_{23}$ to $\sin^2(\theta_{23})$ includes $\cdot^2$ rather than $\cdot^2$ in order for the squaring of the vector $\sin(P3)$ to be done element by element. In this example, we have chosen to use 20 bins rather than the default value of 30 simply to demonstrate the usage of the binning parameter. Note that the GUI has also parsed the variable transformation string into the proper $x$-label of the figure. This will be done in every graph type. There is one additional parameter field affecting the histogram plots, this is the weight function parameter field. It provides the user with the possibility of weighting the number of samples depending on the parameters. The number of times a point has been sampled is simply multiplied with this weight. The value put into this field is parsed into an inline function, similar to the transformation of variables in the variable rows. Just as with the variable transformations, the user must make sure that the function computes...
3.2. MAKING PLOTS

3.2.2 1D chain progression plots

In Fig. 3.4, we show a one-dimensional chain progression plot for \( \sin^2(\theta_{23}) \). This graph type simply provides a plot of the variable value against the number of the distinct sample. It is a tool for visualizing how the chains behave. A well-behaved and well-converged chain should seem to jump randomly back and forth within the range of values taken by the chain. In addition, it should not be possible to distinguish where one chain ends and another one starts. A chain which actually looks as a random walk within the parameter space usually has bad convergence and should not be trusted. Two possibilities of fixing this problem are using larger steps or producing more samples (or a combination of

Figure 3.4: A 1D chain progression plot for \( \sin^2(\theta_{23}) \) for the ISS neutrino factory simulation, as well as the GUI settings that produced it.

the weights element-wise as it is applied to the full set of samples at the same time. If no weight function is specified, then the original number of samples is used. This feature is useful to counteract the effects of a variable transformation with a jacobian different from one.

Using the export data feature with a 1D histogram graph type produces a file containing two columns of floating point numbers. The first of these represents the variable values at the center of the bins, while the second represents the number of counts.
3.2.3 1D confidence region plots

The one-dimensional confidence region plot is essentially an advance variant of the histogram plot. An example of this plot is shown in Fig. 3.5. The procedure followed by the GUI in order to produce the confidence region plot is as follows. First of all, the same information as for the histogram plot is produced, i.e., the samples are divided into bins. The GUI then applies a Gaussian filter to the histogram in order to provide a smoother curve and get rid of the statistical fluctuations. The standard deviation of the Gaussian filter (in bins) is set by the filter parameter field. If the field is left blank, then the width is assumed to be zero and no filtering is applied. It is possible to use a non-integer standard deviation. Finally, the GUI computes what bins that are needed to contain a given fraction of the samples (using as few bins as possible). The fraction is set by the confidence levels (CLs) parameter field and the default value is 0.68. Just
as in the case of a 1D histogram plot, the confidence region plots are affected by the weight function parameter field.

The actual graph contains a thick black curve, representing the distribution of samples along the chosen variable, a horizontal red line, representing the level above which bins are needed to contain the given ratio of the samples, a vertical dashed black line, representing the best-fit bin, and a green region, representing the parameter values within which the ratio is contained. The graph has no scale on the y-axis, simply due to the fact that it represents a distribution and the normalization is arbitrary. The user is also presented with the option of producing one-sided confidence regions through the Type parameter field.

In the edges of the graph, the Gaussian filter assumes the boundary conditions set by the Boundary cond. variable field.

Using the export data produces a file containing the one-dimensional distribution. The main advantage over the export results from the histogram plot is that the data can be filtered.

### 3.2.4 1D chi square

The one-dimensional chi square plot divides the plotting range into bins and plots the minimum value of the $\Delta \chi^2$ function in each bin (at the corresponding parameter value). This procedure roughly corresponds to a profiling of the $\chi^2$ function for the selected parameter. Along with the $\chi^2$ function, lines corresponding to the values 1, 4, and 9 are also plotted, corresponding to the 1, 2, and 3 $\sigma$ regions for the cases where Wilks’ theorem can be applied. Note that there is no guarantee that the plotted values actually are close to the actual minimal values, but the approximation will be better the better sampled the region is. It is up to the user to interpret the resulting plot and make sure that the sampling is good enough for the results to be robust. An example of a 1D chi square plot is given in Fig. 3.6.

### 3.2.5 2D scatter plots

The two-dimensional scatter plots simply puts points in a two-dimensional plot where the samples are located for the variables chosen. An example of a two-dimensional scatter plot is given in Fig. 3.7. Apart from providing a first view of how the samples are distributed in the chosen variables, the scatter plots may also provide a visual test for how well-behaved the simulation was. For a well-converged simulation, the points should be distributed quite smoothly and no trace of them being the result of a random walk should be visible (as in the figure). Chains that do not have a good convergence will display features as some regions being overpopulated due to the walk staying there for too long. Again, the remedy for resolving this issue would be to increase the number of samples in the simulation and/or changing the step sizes.

The use of the export data feature with this plot type will result in a list of the different points in parameter space. The main advantages of such a file over the original chain files is that the chains are joined, that the file only contains
the information on the specific parameters, and that the parameters can be arbitrarily transformed (although any reasonable plotting tool should be able to handle this).

### 3.2.6 2D counts contour plots

Much like the scatter plots are the two-dimensional equivalents of the chain progression plots, the two-dimensional contour plots are the equivalents of the confidence region plots. An example of a contour plot is given in Fig. 3.8. The plots are constructed by binning the samples, using a Gaussian filter to eliminate the statistical fluctuations, and finally the smallest-area contours containing a given ratio of the samples are drawn.

Similar to the confidence region plots, the counts contour plots have two extra parameter fields, the filter field and the confidence levels (CLs) field. The filter field can be used to input the standard deviation of the Gaussian filter to be used. The user can choose to use two different numbers in the \( x \) and \( y \) directions. This is done by simply inputting two different comma and/or white-space separated numbers in the filter field. The first of these will be used in the \( x \) direction and the second in the \( y \) direction. If the filter field is left blank, then no filter will be applied.

The CLs field can be used to input the levels at which to draw the contours. In order to draw contours at levels other than the pre-defined values, simply input a comma and/or white-space separated list of these into the field. The
Figure 3.7: A 2D scatter plot for $\sin^2(\theta_{23})$ and $\Delta m^2_{31}$ for the ISS neutrino factory simulation, as well as the GUI settings that produced it. Note that this scatter plot only contains the last 64000 samples to reduce the figure size.
Figure 3.8: A 2D count contour plot for $\sin^2(\theta_{23})$ and $\Delta m_{31}^2$ for the ISS neutrino factory simulation, as well as the GUI settings that produced it.
3.2. MAKING PLOTS

CLs are given in ratios compared to the total number of samples and should therefore be numbers between 0 and 1. If the field is left blank, then a default list of 0.68, 0.90, and 0.95 will be used.

Similar to the 1D histogram and confidence region plots, this graph type is also affected by the weight parameter field.

If using the export data feature with this graph type, the resulting file will contain a matrix defined by the Matlab contour definition.

3.2.7 2D frequentist contours

Much like the one-dimensional chi square function, this plot option uses the values of the sampled $\chi^2$ function rather than the sampled distribution. The contours are drawn at specified $p$-values, enclosing the corresponding frequentist confidence regions based on the minimal $\chi^2$ value found in each bin. This type of plot is very sensitive to bad sampling and it is up to the user to make sure that the sampling is sufficient in order to draw any inferred conclusions.

3.2.8 Triangle plots

The triangle plot graph type can be used to produce a figure containing several of the confidence level and contour plots. A typical triangle plot is presented in Fig. 3.9. By default, the triangle plot selects the combination of three simulation variables that present the largest cumulative relative covariance and produces all of the confidence level and contour plots for these. This can be changed by filling in the parameters extra parameter field in order to select what parameters to use. When doing so, simply input a comma and/or white-space separated list with the numbers of the parameters to use (without the initial P).

Although two variable rows are displayed when the triangle plot type is selected, only the bins fields have any effect on the final result. This is simply due to the fact that the x and y parameters change throughout the triangle plot. The bins fields will however be used - the x bins field will be used in all plots, while the y bins field will only be used in the contour plots. Furthermore, the filter and CLs fields are also available for the triangle plot. The values of these fields will simply be passed along to the functions drawing the confidence region and contour plots and therefore have exactly the same usage as for these.

An important point is that only the first value will be used in the case of the confidence region plots, since this plot type requires that only one value is passed to it. This means that an input of 0.68,0.9 for the CLs field will produce the same contours, but different confidence region plots, compared to an input of 0.9,0.68.

Since the data for the triangle plots can be exported using the individual 1D confidence region and 2D counts contour plots, the export data feature is turned off for the triangle plots.
Figure 3.9: A triangle plot for the ISS neutrino factory simulation, as well as the GUI settings that produced it.
3.2. MAKING PLOTS

3.2.9 3D surface plots

The 3D surface plots are essentially the three-dimensional equivalents of the 2D counts contour plots and are created in exactly the same way. In Fig. 3.10, we present a 3D surface plot showing the two degeneracies of the example in Sec. 2.4.2. This plot type has the same parameter fields as its two-dimensional counterpart. However, note that three-dimensional filtering and binning requires quite a bit of computations and may therefore take some time. Also note that it will usually only be possible to see the outer of the surfaces.

Since this plotting type is mainly intended to allow the user to visualize the correlation between different parameters, it does not include the possibility of exporting any data.
CHAPTER 3. THE MONTECUBES MATLAB GUI

3.3 Results from the degenerate solution simulation

In Sec. 2.4.2, we showed how to treat cases with degenerate solutions. In particular, as an example, we have performed a simulation using a beta-beam with a known degeneracy where a flip of the sign of the atmospheric mass squared difference gives a solution which produces nearly as good a fit as the input values. The reason for choosing a scenario where the solutions are not completely degenerate is that we want to show that the Monte Carlo is able to produce the correct weights for the different degenerate solutions as well as exploring both of them properly. The actual determination of $|\Delta m_{31}^2|$ by the experiment is not very good, and thus we focus on the $\theta_{13}$-$\delta$ parameter space, which is where the degeneracy is apparent. We already showed the degenerate solution in the example of the 3D surface plot and we now concentrate on the one- and two-dimensional plots, which are easier to interpret by inspection.

The one-dimensional confidence region plots are given in Fig. 3.11. From this figure, it is apparent that the input solution (essentially the best-fit) is more in line with the simulation results than the degenerate solution, which is only slightly allowed at the 68 % level in both $\theta_{13}$ and $\delta$. Note that, although the degeneracies seem relatively close in the $\theta_{13}$ and $\delta$ parameters, there is actually a huge separation between them due to the flip of the sign of the atmospheric mass squared difference. The contour plot of the same degeneracy is shown in Fig. 3.12. While the degenerate solution is still smaller than the input solution, the difference now seems a little less pronounced. However, this is simply due to projection reasons, since the input solution both has a higher count rate and is broader, it will become more pronounced when summing the samples in one direction.

Figure 3.11: The 68 % confidence region plots of the degeneracy in $\theta_{13}$ and $\delta$. 
3.4 Examples of bad convergence

As mentioned earlier, the convergence of the chains can be checked visually by studying some of the plots, in particular, the chain progression and scatter plots. For reference, we here present the results of the ISS neutrino factory simulation using a step size which is 50 times smaller than in our previous example. In this case, the convergence parameters are $R_{\theta_{23}} = 13.2623$ and $R_{\Delta m_{31}^2} = 1.0937$. The parameters used to produce the figures are the same as earlier in this chapter. The simulation contains four chains with 14000 samples each. In Fig. 3.13, we can clearly see the random walk structure of the chains as well as the jumps when changing chains, while Fig. 3.14 shows the sporadic coverage of the scatter plot, as well as the localization to only a few regions due to the small number of samples. Finally, in Fig. 3.15, we show the contours produced from this simulation. From this plot alone, it is quite apparent that the confidence regions are not what one would expect from a well-behaved simulation.

3.5 Notes on filtering

As mentioned earlier, both the confidence region plots and contour plots use Gaussian filters in order to smoothen the features of the simulation results. This is actually quite necessary in order to produce figures which do not look gobbled up, while maintaining a large number of bins. For example, Fig. 3.16 shows how Fig. 3.12 would appear without the filter. However, it is apparent that using a filter which is too wide will destroy features in the plot. Of course, what we really want to do is to destroy the features introduced by the random
Figure 3.13: A 1D chain progression plot for $\sin^2(\theta_{23})$ for an ISS neutrino factory simulation using a step which is 50 times smaller than those used earlier.

Figure 3.14: A scatter plot for $\sin^2(\theta_{23})$ and $\Delta m^2_{31}$ for an ISS neutrino factory simulation using a step which is 50 times smaller than those used earlier.
3.5. NOTES ON FILTERING

Figure 3.15: A contour plot for $\sin^2(\theta_{23})$ and $\Delta m_{31}^2$ for an ISS neutrino factory simulation using a step which is 50 times smaller than those used earlier.

Figure 3.16: How Fig. 3.12 would appear without the Gaussian filter.
fluctuations while maintaining the features that are inherent of the physical setup. Thus, a valid question is: What number of bins and what filtering should one use?

Clearly, in order to properly reproduce a feature, we should use a bin size as well as a filter size which is relatively small compared to the typical size of the feature. Any feature smaller than the bin size will be lost upon binning, and any feature smaller than the filter size will be completely smoothed out into a Gaussian with the filter size.

The easiest way to produce a reliable figure is to simply pick an appropriate bin size and then to try different filter sizes. As the features of the graph are smoothened out by the filter, the results will always be conservative. Thus, the best filter size is one which makes the contours smooth and where decreasing the filter size does not significantly shrink the contours. If no such filter size can be found, this means that the simulation does not contain enough samples to reproduce the wanted features. This leaves the user with essentially three alternatives; using a relatively jagged graph, using a graph which is smooth but overestimates the sizes of the features in it, or rerunning the simulation with a larger number of samples.
Appendix A

Markov Chain Monte Carlo theory

Markov Chain Monte Carlos are a powerful tool which can be used to sample multi-dimensional probability distributions. Essentially, this is achieved by creating a Markov Chain that has the desired distribution as an equilibrium distribution. In particular, the method used in the MonteCUBES C library is the Metropolis–Hastings algorithm. In this chapter, we will describe this algorithm, as well as how it is implemented into MonteCUBES.

A.1 The Metropolis–Hastings sampling algorithm

Suppose that we have a probability density distribution \( P(x) \), which depends on the set of parameters \( x \), and that we wish to construct a set of samples of this distribution through Monte Carlo methods. The Metropolis–Hastings (MH) algorithm performs this sampling through a random walk in the parameter space. In order to actually sample the distribution properly, this random walk must have the desired distribution as its equilibrium distribution. In the MH algorithm, this is achieved through the following steps:

1. To generate \( x_{n+1} \), create a new random point in parameter space \( \hat{x} \) according to the known jump probability function \( W(x_n \rightarrow \hat{x}) \).

2. Compute the probability densities \( P(x_n) \) and \( P(\hat{x}) \).

3. Pick a random number \( p \) from a uniform distribution in the interval \([0, 1]\). If
   \[
   p < \min \left( 1, \frac{P(\hat{x})W(\hat{x} \rightarrow x_n)}{P(x_n)W(x_n \rightarrow \hat{x})} \right) = P(x_n \rightarrow \hat{x}),
   \]
   then put \( x_{n+1} = \hat{x} \). Otherwise, put \( x_{n+1} = x_n \).

4. Repeat this procedure until the appropriate number of samples have been reached.
In order to see why this procedure has $\mathcal{P}(x)$ as its equilibrium distribution, let us consider the equilibrium condition of detailed balance

$$R(x \rightarrow y) = R(y \rightarrow x), \quad (A.1)$$

where $R(x \rightarrow y)$ is the transition rate from $x$ to $y$. Since $R(x \rightarrow y)$ is simply given by the product of $\mathcal{P}(x)$ (describing the probability to be in $x$) and $W(x \rightarrow y)$ (the rate of transition from $x$ to $y$ given that we are starting in $x$), the detailed balance condition simply boils down to

$$\mathcal{P}(x)W(x \rightarrow y) = \mathcal{P}(y)W(y \rightarrow x). \quad (A.2)$$

Thus, in order for our algorithm to sample $\mathcal{P}(x)$ as quickly as possible, we must make sure that it fulfills detailed balance while maximizing the probability of actually making a jump. Since the probability of accepting a test step is $P(x_n \rightarrow \hat{x})$ it follows that, at equilibrium,

$$R(x \rightarrow y) = \mathcal{P}(x)W(x \rightarrow y)P(x \rightarrow y) = \mathcal{P}(x)W(x \rightarrow y) \min \left(1, \frac{\mathcal{P}(y)W(y \rightarrow x)}{\mathcal{P}(x)W(x \rightarrow y)} \right) = \mathcal{P}(y)W(y \rightarrow x) \min (\mathcal{P}(x)W(x \rightarrow y), \mathcal{P}(y)W(y \rightarrow x)) = R(y \rightarrow x), \quad (A.3)$$

where the last step follows from the symmetry of the expression. Since we have maximized the acceptance rate in one direction ($P(x \rightarrow y)$ cannot be larger than one), it must also be maximized in the other direction.

Essentially, we are free to choose any transition function $W(x \rightarrow y)$. However, a very important special case, which is the one currently implemented in MonteCUBES, is the choice of the original Metropolis sampling algorithm, namely $W(x \rightarrow y) = W(y \rightarrow x)$. With this condition, the acceptance probability is simply the minimum of one and the ratio between $\mathcal{P}(\hat{x})$ and $\mathcal{P}(x_n)$. A future version of MonteCUBES may include the possibility of setting a user-defined transition function.

### A.1.1 Convergence and finer details

Clearly, as the Monte Carlo chain test steps and acceptance criteria depend on the current step of the chain, there will in general be a correlation between subsequent steps within the same chain. In order for this correlation to be erased, it is necessary to create enough samples within each chain and put up criteria of convergence. The convergence criteria implemented in MonteCUBES are based on comparing the variances within each chain with the variance of the entire sample. In addition, in order to get rid of any dependence on the initial conditions, the first parts of the chains should be ignored. The process of ignoring the first part of the chains is known as *burning* and MonteCUBES has two different ways of implementing this:
A.1. THE METROPOLIS-HASTINGS SAMPLING ALGORITHM

1. Static burning. This method simply burns a predefined number of samples in each chain. It can be used when the user has a good grasp of how many steps must be taken between two samples before their correlation goes to zero. Since the sampling should not depend on the starting point, the final set of samples should not be correlated with the initial condition.

2. Dynamic burning. This method burns the initial half of the produced samples and then tests for convergence in the second half. If the chains have not converged, then the number of total samples is doubled and the same procedure is repeated. Effectively, when a set of samples is rejected, it and the samples burned before it become the new burn for the next set of samples. The positive aspect of using dynamic burning is that the user does not need to know anything about for how many steps the samples are correlated. The negative aspect is that half of the chains will be burned, although the number of steps before correlation is lost may be smaller than the number of steps necessary to reach convergence.

In addition to implementing these run-time burning conditions, MonteCUBES always stores the full chains, saving the burn lengths into the summary files. The effective burn length in a simulation can then be changed when using the MonteCUBES Matlab GUI to plot the results.

The convergence checks in a MonteCUBES simulation proceed in the following manner [6]. Suppose that we have generated $M$ chains, each containing $N$ samples after the burned samples have been removed (in the case of dynamic burn, this would mean that the chains contain $2N$ samples in total). We then separately test for convergence for each parameter $x$ that is allowed to vary in the simulation. By $x^i_j$, we denote the $i$th sample of $x$ in chain $j$. Furthermore, we compute the mean of chain $j$

$$
\bar{x}^j = \frac{1}{N} \sum_{i=1}^{N} x^i_j
$$

(A.4)

and the total mean

$$
\bar{x} = \frac{1}{NM} \sum_{j=1}^{M} \sum_{i=1}^{N} x^i_j = \frac{1}{M} \sum_{j=1}^{M} \bar{x}^j.
$$

(A.5)

We now compute the variance in each chain as

$$
\sigma^2_j = \frac{1}{N} \sum_{i=1}^{N} (x^i_j - \bar{x}^j)^2.
$$

(A.6)

A lower bound $W$ on the variance in the complete set of samples is then given by the mean of the chain variances, i.e.,

$$
W = \frac{1}{M} \sum_{j=1}^{M} \sigma^2_j = \frac{1}{M(N - 1)} \sum_{j=1}^{M} \sum_{i=1}^{N} (x^i_j - \bar{x})^2.
$$

(A.7)
An upper bound on the same quantity can be constructed if we compute the variance between chains $B$, namely

$$B = \frac{1}{M-1} \sum_{j=1}^{M} (\bar{x}^j - \bar{x})^2,$$  \hspace{1cm} (A.8)

and the upper bound is

$$W'' = \frac{N-1}{N} W + \frac{B}{M} (M + 1).$$  \hspace{1cm} (A.9)

The parameter $R$ used for the convergence check is then the ratio of these two estimates

$$R = \frac{N - 1}{N} + \frac{B}{W M} (M + 1).$$  \hspace{1cm} (A.10)

In practice, $R$ is simply a measure of how well the variance in each chain corresponds to the total variance. If the convergence of all chains is good, then we expect this parameter to be close to one. However, if one or more chains have only sampled part of the target distribution, then the variance within the chains will be smaller than the variance in the complete sample and $R$ will be significantly larger. In particular, this will be the case when there are degeneracies and different chains fall into different degeneracies. Each chain will then sample one of the degenerate solutions and the variance within the chains will be small compared to the variance in the complete set of samples. Since the distance between the degeneracies will in general be large, $\bar{x}^j$ will not be close to $\bar{x}$.

If the MonteCUBES C library is processing a chain with extremely large convergence parameters after a large number of steps, then it will warn the user of this and suggest using the built-in degeneracy solver in order to resolve this. **Warning!** While different chains may fall into different degeneracies and the MonteCUBES degeneracy solver is designed to allow chains to jump between different degeneracies, it is by no means implied that no degeneracies exist if they do not. Well separated degeneracies will not be reached if the simulations are started close to only one of the degeneracies.

### A.2 Usage and interpretation of the methods from GLoBES

Since MonteCUBES is using GLoBES methods in order to find the likelihood ratios, we should devote some time to introducing how this is done. In order to discuss this properly, we first need to mention Bayes’ theorem and its interpretation for discriminating among different models and/or parameter values. The statement of Bayes’ theorem is

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)},$$  \hspace{1cm} (A.11)
where \( P(A|B) \) is the conditional probability of \( A \) given \( B \). In our case, we let \( A \) be the set of model parameters \( \theta \) and \( B \) be the (actual or simulated) data points \( D \). The probability \( P(\theta|D) = \mathcal{P}_D(\theta) \) is essentially the probability density that we wish to sample and gives the relative likelihoods of the parameter values given the data \( D \). The probability \( P(D|\theta) = \mathcal{L}_D(\theta) \) is the likelihood of actually making the measurement \( D \) if the true parameters are \( \theta \), while \( P(\theta) = \pi(\theta) \) is a prior function, which inputs our pre-knowledge of the theory parameters \( \theta \). Finally, \( P(D) = C \) is interpreted as the probability of actually getting the measurement \( D \) within the given theory, i.e.,

\[
C = \int \mathcal{L}_D(\theta)\pi(\theta)d\theta, \tag{A.12}
\]

which apparently does not depend on the model parameters, since they are integrated out. Since the Metropolis–Hastings algorithm is only using the ratios of the probability density functions, it is therefore equivalent to insert \( \mathcal{P}_D(\theta) \) and \( \mathcal{L}_D(\theta)\pi(\theta) \) as the probability density.

### A.2.1 The GLoBES \( \chi^2 \) as the log-likelihood

In order to compute how well a given data set \( D \) fits a specific set of model parameters \( \theta \), GLoBES uses the logarithm of the likelihood ratio

\[
\lambda(\theta) = \prod_i f(n_i(\theta), \bar{n}_i)/f(\bar{n}_i, \bar{n}_i), \tag{A.13}
\]

where \( n_i(\theta) \) is the predicted number of events in bin \( i \) given the parameters \( \theta \), \( \bar{n}_i \) is the actual number of events in bin \( i \), and \( f(n, m) \) is the likelihood of \( m \) events given a Poisson distribution with mean \( n \), it is given by

\[
-2 \ln[f(n, m)/f(m, m)] = 2[n - m + m \ln \left( \frac{m}{n} \right)]. \tag{A.14}
\]

Again, the denominator is a normalizing constant and does not affect the ratios of the probability densities in the Monte Carlo. The nominal GLoBES \( \chi^2 \) function is defined as

\[
\chi^2(\theta) = -2 \ln \lambda(\theta) = 2 \sum_i \left[ n_i(\theta) - \bar{n}_i + \bar{n}_i \ln \left( \frac{n_i(\theta)}{\bar{n}_i} \right) \right] \tag{A.15}
\]

and systematic errors are then taken into account using the pull method with Gaussian systematics to obtain the final \( \chi^2 \) (see the GLoBES manual for details), which we will denote by \( \chi^2(\theta) \). The actual probability density sampled by MonteCUBES is

\[
\mathcal{P}(\theta) = \lambda(\theta)\pi(\theta) = \exp \left[ -\frac{\chi^2(\theta)}{2} \right] \exp \left[ \frac{\chi^2 P(\theta)}{2} \right], \tag{A.16}
\]

\(^1\)The constant \( C \) can essentially be used to discriminate among different models.

\(^2\)Note that this does not follow a \( \chi^2 \) distribution except in the limit of large samples.
where $\chi^2_p(\theta) = -2 \ln \pi(\theta)$ (with a slight abuse of notation, this quantity is referred to as the prior, although it is actually related to the logarithm of the prior function). The central quantity used in MonteCUBES is $\hat{\chi}^2 = \chi^2 + \chi^2_P$, this is the actual number that will be stored along with the samples in the MonteCUBES output files (see Sec. 2.3).

A.2.2 Notes on priors

Obviously, a given parametrization of a model is not necessarily the only one and the parametrization used to implement the physics of the model may not be the same as the one which is most illuminating. For example, GLoBES implements the mixing angles and the CP-phase as the parameters of the neutrino oscillation theory, while it is common to plot the results as a function of $\sin^2$ of the angles (or multiples of the angles). Since this transformation may not preserve volumes in the parameter space, it will also affect the probability density. Let us assume that we make the transformation $\theta \rightarrow \theta'$. For the relation $\mathcal{P}(\theta)d\theta = \mathcal{P}'(\theta')d\theta'$ to hold, we must have

$$\mathcal{P}'(\theta') = \mathcal{P}(\theta)|J(\theta)|,$$

(A.17)

where $J(\theta)$ is the Jacobian of the transformation. In order to preserve the expression for the probability density in terms of the likelihood and prior, we must have

$$\pi'(\theta') = \pi(\theta)|J(\theta)|.$$

(A.18)

Thus, the actual value of the prior function is parametrization dependent and the prior does not have the same expression for different parametrizations. In particular, this means that assuming a flat prior (which is essentially saying that any parameter values are equally likely) in one parametrization will still give a non-flat prior in some other parametrization. The MonteCUBES GUI includes a weight function so that the user can essentially change the prior by hand post-simulation. This can be useful, e.g., when making plots where $\sin^2(2\theta)$ is used and the user does not want to rewrite the internal GLoBES or MonteCUBES prior functions. The implied prior in the $\sin^2(2\theta)$ space will give a pile-up of samples near $\sin^2(2\theta) = 1$ but multiplication of the number of samples by $|d\sin^2(2\theta)/d\theta| = |2\sin(4\theta)|$ will give a flat prior in this space (assuming the original prior was flat in $\theta$). The multiplication of the sample number in the GUI is done on a sample-by-sample basis.

A.2.3 Interpreting the results

All of the MonteCUBES GUI methods that provide a confidence region of some sort (i.e., 1D histogram, 1D confidence region, 2D contours, and 3D surface plots) build upon the same principle. Initially, the region for which to make the plot is divided into bins and the (weighted) number of samples in each bin is computed after which any filter introduced to suppress statistical fluctuations is applied.

3Note that the region close to $\sin^2(2\theta)$ will still be sampled in greater detail.
A.3 THE MONTECUBES DEGENERACY SOLVER

The plotted regions includes all bins with a total number of samples larger than \(N\), where \(N\) is chosen such that the region includes a given percentage \(\alpha\) of the total number of samples. The resulting region is the smallest region containing the fraction \(\alpha\) of the samples. In the case of the 1D confidence region, there is also a line denoting the point of maximum probability density, which is simply the bin with the largest number of samples.

A.3 The MonteCUBES degeneracy solver

A common feature of many setups for neutrino oscillation experiments is the appearance of solutions which are degenerate. In fact, degenerate solutions are in many cases the source of the main uncertainties predicted for different oscillation parameters in several experiments. In this section, we will describe how the MonteCUBES degeneracy solver works from a theoretical standpoint. For an example on how to use it, see Sec. 2.4.2.

If the distribution that we are sampling have well separated degeneracies, then we are faced with a problem when choosing the appropriate step sizes for our Monte Carlo simulations. Assuming that we only take Gaussian steps of a given average size, there are two possible choices:

1. **Degeneracy sized steps.** If we use step sizes comparable to the size of each degenerate solution, then the solution that we happen to fall into will be sampled very well. However, the probability of jumping between the degeneracies will be severely suppressed. This is due to the fact that, in order to jump, the chains must at some point pass through the region which should not contain so many samples. If \(\Delta \chi^2\) is the typical difference in \(\chi^2\) between the lowest point of the wall and the minimum of the degeneracy, then the simulation should sample the minimum point about

   \[
   \exp(\Delta \chi^2/2)
   \]

   times for each time that the lowest wall point is sampled. If

   \[
   \Delta \chi^2 = \mathcal{O}(200),
   \]

   which is not at all unreasonable, then this ratio is \(\mathcal{O}(10^{43})\). Adding the fact that, in order to be sure that the chains have sampled the degenerate solutions with proper weights, the chains should jump a large number of times. A simulation that properly samples the degeneracies with this choice of step length would have to run for a very long time.

2. **Degeneracy difference sized steps.** If we instead use steps of a size which is comparable to the size of the step needed to jump between the degeneracies without having to sample points in between, then the chains will hardly ever jump. This would result in the degeneracies being sampled with about the correct weights. However, it would have the drawback of not exploring each individual degeneracy in any detail. Thus, this choice also seems like a bad idea.
A.3.1 Chain heating

One way of dealing with degeneracies is to heat the sampled distribution. Instead of sampling the actual distribution, we sample the distribution \( P_T(x) = P(x)^{1/T} \), where \( T > 1 \) is the temperature parameter. The distribution \( P_T(x) \) can, depending on \( T \), be significantly flatter than the original distribution and the relative weights of the samples will clearly change. Thus, in order to interpret the results, we somehow need to relate the sample from \( P_T(x) \) with a sample of \( P(x) \). This posterior process of relating a heated chain with the original distribution is known as cooling.

Once the heated chains have been produced, we therefore need to find a method of using posterior cooling. Since the distributions we are sampling are continuous, the number of times a point is sampled is not necessarily proportional to \( P(x) \) or \( P_T(x) \) (imagine that we already have a way of picking random samples from \( P(x) \), then we could use \( W(x \rightarrow y) = P(y) \) and have a transition probability of one, meaning that each point would essentially only be sampled once). Instead, we are interested in the sampling density and it is therefore a valid point to ask how much more or less likely it is that the point would have been sampled given a cooler chain. Since we are anyway computing \( P(x) \) at the sampling points, the way of doing this is to use the transformation

\[
n_i \propto n_T^i \frac{P(x_i)}{P_T(x_i)}, \tag{A.19}
\]

where \( n_i \) is number of samples for the cooled distribution, \( n_T^i \) is the number of samples for the heated distribution, and \( x_i \) is the sample point. Since the actual proportionality constant is irrelevant for our purposes, we may as well put it to one. The reason to use this transformation is that point in the vicinity of \( x_i \) should be sampled with a rate proportional to \( P(x_i) \) when using the cooled distribution, while they are sampled with a rate proportional to \( P_T(x_i) \). Thus, multiplying with the fraction between these distributions generates the correct relative sampling frequencies.

The method of heating chains also has some problems. The largest of these being the fact that our simulations will spend a lot of time in regions where the actual probability density is quite small. If the region in between the degeneracies contains points with a very small probability density and the degeneracies are well separated, then the chains will have to be heated by a very large amount, meaning that the degenerate solutions themselves will not be that well explored.

A.3.2 Degenerate steps

Another way of dealing with degeneracies is based on the fact that the Metropolis–Hastings sampling algorithm allows for quite general transition functions. If the user knows where the degeneracies are located with respect to each other, then it is possible to construct a transition function which takes this into account. This way of solving degeneracies is also integrated into the MonteCUBES C library. This is implemented in such a way that the test steps in the Markov
Chains, in addition to the random Gaussian step, takes a step in the degeneracy direction with a predefined probability $p$. If $W_0(x \rightarrow y)$ is the original transition function, the new transition function is given by

$$W(x \rightarrow y) = (1 - p)W_0(x \rightarrow y) + \frac{p}{2} [W_0(x \rightarrow y - d) + W_0(x \rightarrow y + d)], \quad (A.20)$$

where $d$ is the difference vector in parameter space between the degenerate solutions. The factor of $1/2$ in the second term comes from taking the degeneracy step in two different directions with equal probability. It is easy to check that $W(x \rightarrow y)$ is symmetric if $W_0(x \rightarrow y)$ is. This way of solving degeneracies can be likened with digging a tunnel between the degenerate solutions. The specific choice of transition function makes it possible for the Markov Chains to pass from one degenerate solution to the other without having to pass the ridges of small probability densities.

**A.3.3 Which method do I use?**

A good question when dealing with degeneracies is what method should be used to resolve them. Clearly, both solutions have both up- and downsides. While the chain heating method will mean sacrificing computing time for exploring very low-probability parts of the parameter space, the degeneracy step method demands that the user already knows where the degenerate solutions are located. Thus, the method employed depends greatly on what the user wants to know. If the user has no pre-knowledge on where the degenerate solutions are located, then it may be a good idea to start out by heating the chains in order to find the degeneracies. If the chains do not need to be heated by a large amount (i.e., the degeneracies are relatively close), then this may be sufficient to also explore the structures of the degeneracies themselves. However, if the degeneracies are well separated, then it may be useful to run some heated chains first. If these runs discover degeneracies, but do not resolve them with proper accuracy, then the information on the distance between the degeneracies can be implemented in a run using the degenerate step degeneracy solver in order to make a more detailed exploration of the degenerate solutions.

**A.3.4 The temperature lowering degeneracy finder**

One way of dealing with the dilemma of which method to use to treat degeneracies is to use both. This is implemented in MonteCUBES through using a heating method in order to locate the degeneracies and then using the appropriate degeneracy steps between these degenerate solutions in order to explore the regions around them properly.

This degeneracy finder works by running several chains starting at a high temperature $T_h \gg 1$ (so that the walls between the degeneracies can be passed). When a sufficient number of Monte Carlo steps have been taken, so that the chains have reached equilibrium at the high temperature, the temperature is lowered and the chains are run for the same number of steps at this lower
temperature (note that the chains are not run to equilibrium at the lower temperatures, since we want to find the degeneracies). This process is repeated until the chains are at a very low temperature $T_l \ll 1$, where the degeneracies are extremely pronounced. The final samples in the chains will then be located close to the different local minima. Thus, the degeneracy finder checks the resulting chain endpoints for different minima (two endpoints are considered as belonging to the same minima if they are less than one Monte Carlo step size at $T = 1$ away from each other.

The step sizes used by the degeneracy finder vary from temperature to temperature. Essentially, the degeneracy finder uses the same steps as the main Markov Chain Monte Carlo at $T = 1$. When $T \neq 1$, the steps sizes are multiplied by $\sqrt{T}$ in order to accommodate for the flatter distribution.

Note that it is not guaranteed that each degenerate solution will be explored by this method. There are essentially two things that can go wrong:

1. The original temperature is not high enough. If this is the case, then the degeneracy finder will still not be able to pass between the degeneracies and will only find degeneracies between which the temperature is sufficient.

2. Pure chance. There is always the pure statistical chance that one degenerate solution will be missed. The probability of this depends on the number of chains. Clearly, if the number of chains is smaller than the number of degeneracies, the probability is one. Therefore, we recommend that you run a number of chains which is about an order of magnitude larger than the expected number of degeneracies. In Fig. A.1, we show the probability of missing one or more of the degenerate solutions as a function of the number of chains and the number of degeneracies.
Figure A.1: The probability of missing one or more of the degenerate solutions under the assumption that the chains fall into each degeneracy with equal probability. The labels denote the total number of degeneracies.
Appendix B

The NonUnitarity Engine (NUE)

The NonUnitarity Engine (NUE) is a probability engine implementing the physics of a non-unitary lepton mixing matrix into GLoBES. The NUE is installed along with the MonteCUBES C library. However, the methods of NUE are included in the header file `nue_probability.h` rather than in `montecubes.h`, although these will be located in the same directory after installation. You can also use the NUE independently from the rest of MonteCUBES. This appendix describes the functionality that is added when including the header file through the command:

```
#include <montecubes/nue_probability.h>
```

B.1 Theory of a non-unitary mixing matrix

A non-unitary lepton mixing matrix in the CC interaction between neutrinos and charged leptons is the generic feature of models involving extra degrees of freedom that can mix with either of the lepton components. In particular, in the popular type-I seesaw models accommodating the smallness of neutrino masses through the addition of heavy fermionic singlets (right-handed neutrinos), these extra degrees of freedom will mix with the light active neutrinos giving rise to a larger mixing matrix than the standard three by three one. The three by three sub-matrix involving the mixing between the light mass eigenstates accessible at low energies and the three active flavour eigenstates, will in general not be unitary. In standard seesaw models these unitarity violation is expected to be unobservably small. On the hand, these violations are induced by an independent, lepton number conserving operator than the one that generates neutrino masses. The smallness of the neutrino mass can then be naturally accommodated through a slightly broken lepton number symmetry, as in the
inverse or double seesaw models, with large testable deviations from unitarity of the lepton mixing matrix.

The two most widely used parametrizations to encode these non-unitarity effects stemming from the heavy-active mixing are

\[ N = (I + \eta)U' \quad \text{or} \quad N = TU = (I + \alpha)U, \quad (B.1) \]

where \( \eta \) is a Hermitian matrix and \( T \) is a lower triangular matrix. In Eq. (B.1) both \( U \) and \( U' \) are unitary matrices that are equivalent to the standard PMNS matrix up to small corrections proportional to the deviations encoded in \( \eta \) and \( \alpha \).

\[ \eta = \begin{pmatrix} \eta_{ee} & \eta_{e\mu} & \eta_{e\tau} \\ \eta_{e\mu}^* & \eta_{\mu\mu} & \eta_{\mu\tau} \\ \eta_{e\tau}^* & \eta_{\mu\tau}^* & \eta_{\tau\tau} \end{pmatrix}, \quad \alpha = T - I = \begin{pmatrix} \alpha_{ee} & 0 & 0 \\ \alpha_{e\mu} & \alpha_{\mu\mu} & 0 \\ \alpha_{e\tau} & \alpha_{\mu\tau} & \alpha_{\tau\tau} \end{pmatrix} \quad (B.2) \]

with \( \eta_{\alpha\beta}, \alpha_{\alpha\beta} \ll 1 \).

The deviations from unitarity are directly related to the heavy-active neutrino mixing. For instance, in the Hermitian parametrization one can directly identify

\[ \eta = -\frac{\Theta\Theta^\dagger}{2} \quad (B.3) \]

where \( \Theta = m_D^1 M^{-1} \) is the heavy-active mixing given by the ratio of the Dirac over the Majorana mass scales. Thus, \((1 + \eta)\) is just the first term in the cosine series correcting the unitary rotation \( U' \). It is also straightforward to obtain the relation between the heavy-active neutrino mixing and the \( \alpha \) parameters in the triangular parametrization, if one considers that the heavy-active mixing can also be encoded by introducing additional complex rotations characterized by new mixing angles \( \theta_{ij} \), with \( j > 3 \). For example,

\[ U_{14} = \begin{pmatrix} c_{14} & 0 & 0 & \hat{s}_{14} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\hat{s}_{14} & 0 & 0 & c_{14} \end{pmatrix}, \quad (B.4) \]

where \( \hat{s}_{ij} = e^{i\theta_{ij}}s_{ij}, \) \( s_{ij} = \sin \theta_{ij} \) and \( c_{ij} = \cos \theta_{ij} \). In the correct order, these extra rotations lead to a lower triangular matrix. For 3 extra neutrinos we can use \( U_{36}U_{26}U_{16}U_{35}U_{25}U_{15}U_{34}U_{24}U_{14} \) (where we have not included unphysical rotations among the sterile neutrinos), leading to:

\[ -\alpha \simeq \begin{pmatrix} \frac{1}{2} \left( s_{14}^2 + s_{15}^2 + s_{16}^2 \right) & 0 \\ \frac{1}{2} \left( s_{24}^2 + s_{25}^2 + s_{26}^2 \right) & 0 \\ \frac{1}{2} \left( s_{34}^2 + s_{35}^2 + s_{36}^2 \right) & 0 \end{pmatrix}, \quad (B.5) \]

which is accurate to second order in the (small) extra mixing angles.

In principle, the two parametrizations are equally valid. However, some caution is in order. As an illustrative example, let us compare the \( \nu_\mu \) disappearance
probability in the atmospheric regime in the two parametrizations, obtained at linear order in the non-unitarity parameters and for $\theta_{13} = 0$

$$\mathcal{P}_{\alpha\mu}^\mu = 1 - \{\sin^2 2\theta'_{23} + 2\text{Re}[\eta_{\mu\tau}] \sin 4\theta'_{23} \} \sin^2 \Delta_{31},$$

$$\mathcal{P}_{\alpha\mu}^\nu = 1 - \sin^2 2\theta_{23} \sin^2 \Delta_{31},$$

where $\Delta_{ij} = \Delta m^2_{ij} L/4E$. This apparent inconsistency stems from the fact that the unitary matrices $U$ and $U'$ which are identified with the standard unitary PMNS matrix in each parametrization are, in fact, different. The differences between the two are linear in the non-unitarity parameters, and the two matrices can be related to each other [7]:

$$\begin{pmatrix}
\alpha_{ee} & 0 & 0 \\
\alpha_{\mu e} & \alpha_{\mu\mu} & 0 \\
\alpha_{\tau e} & \alpha_{\tau\mu} & \alpha_{\tau\tau}
\end{pmatrix}
= \begin{pmatrix}
\eta_{ee} & 0 & 0 \\
2\eta_{\mu\mu} & \eta_{\mu\tau} & 0 \\
2\eta_{\tau\mu} & 2\eta_{\tau\tau} & \eta_{\tau\tau}
\end{pmatrix}$$

and

$$\theta_{12} - \theta'_{12} = -\frac{\text{Re}(s_{23}\eta_{e\tau} - c_{23}\eta_{e\mu})}{c_{13}},$$

$$\theta_{13} - \theta'_{13} = -\text{Re}(-s_{23}e^{i\delta_{\text{CP}}}\eta_{e\mu} - c_{23}e^{i\delta_{\text{CP}}}\eta_{e\tau}),$$

$$\theta_{23} - \theta'_{23} = \text{Re}(\eta_{\mu\tau}) - \tan \theta_{13} \text{Re} \left( c_{23}e^{i\delta_{\text{CP}}}\eta_{e\mu} - s_{23}e^{i\delta_{\text{CP}}}\eta_{e\tau} \right),$$

$$\delta_{\text{CP}} - \delta'_{\text{CP}} = -\frac{\cos 2\theta_{12}}{s_{12}c_{12}c_{13}} \text{Im} \left( s_{23}\eta_{e\tau} - c_{23}\eta_{e\mu} \right) - \frac{1}{s_{13}c_{13}} \text{Im} \left( s_{23}e^{i\delta_{\text{CP}}}\eta_{e\mu} + c_{23}e^{i\delta_{\text{CP}}}\eta_{e\tau} \right)$$

$$+ \tan \theta_{13} \text{Im} \left( c_{23}e^{i\delta_{\text{CP}}}\eta_{e\mu} + s_{23}e^{i\delta_{\text{CP}}}\eta_{e\tau} + \frac{\eta_{\mu\tau}}{\tan \theta_{13}} \right).$$

For neutrino oscillation studies it is generally advantageous to adopt the triangular parametrization, since it leads to fewer corrections given its structure. For instance, in the example shown in Eq. (B.6) there are no corrections coming from non-unitarity for this parametrization, and thus the angle $\theta_{23}$ in $U$ can be identified with the angle determined in present global fits to a good approximation. Indeed, this is also the case for $\theta_{12}$ and $\theta_{13}$, since the $P_{ee}$ oscillation probabilities in the solar regime (KamLAND) and in the atmospheric regime (Daya Bay, RENO, Double-Chooz) are also independent of any non-unitarity corrections at linear order when the triangular parametrization is considered. For this reason the default option of the NUE engine (from version 1.4 on) is the triangular parametrization although the user can still opt for the Hermitian.

Another important issue when simulating non-unitarity (as well as NSI at production or detection and in some cases sterile neutrinos) comes from the fact that very short baseline or even zero-distance effects are present. Thus, the measurement in the near detector may also be affected by the new physics and this turn will propagate to the interpretation of the far detector events if the fluxes and cross sections are determined via near detector data. If near detector data is not explicitly simulated and analyzed together with the far detector but the experiment under study makes use of a near detector to constrain
the flux and cross section then the “reconstructed oscillation probability” $P_{\alpha\beta}$ through this measurement would rather correspond to the ratio of the oscillation probabilities at the near and far detectors:

$$P_{\alpha\beta} = \frac{P_{\alpha\beta}}{P_{\alpha\alpha}(L = 0)} = \frac{P_{\alpha\beta}}{((NN^\dagger)_{\alpha\alpha})^2}.$$  \hspace{1cm} (B.9)

Conversely if the detection cross section of $\nu_\beta$ is directly measured instead of using near detector data from $\nu_\alpha$ the “reconstructed oscillation probability” would be instead given by:

$$P_{\alpha\beta} = \frac{P_{\alpha\beta}}{((NN^\dagger)_{\alpha\alpha})(NN^\dagger)_{\beta\beta}}.$$  \hspace{1cm} (B.10)

Finally if the flux and cross section are instead coming from SM predictions they wouldn’t be affected by new physics effects and the “reconstructed oscillation probability” would simply be:

$$P_{\alpha\beta} = P_{\alpha\beta}.$$  \hspace{1cm} (B.11)

Thus, depending on the situation being simulated different powers of $(NN^\dagger)_{\alpha\alpha}$ and/or $(NN^\dagger)_{\beta\beta}$ may be needed in the denominator. The values of these powers are thus left for the user to be specified (as of version 1.4).

Finally, notice that present bounds on non-unitarity from mixing with heavy neutrino mixing are presently very strongly constraint by electroweak decays [8] and the observation of their effects is essentially excluded at present or near-future neutrino oscillation facilities. Conversely, extra light sterile neutrinos in the averaged-out regime for their oscillations lead to exactly the same phenomenology at leading order and their effects can be much more sizable (see Table I in Ref. [7]).

**B.2 API definitions**

This section contains descriptions of the methods declared in the NUE header file, as well as a list of and explanations for the different constants that are defined in it.

**B.2.1 Methods**

```c
void nue_fixAllNU (glib_projection p)
```

This method sets all projection flags for the non-unitarity parameters in a GLoBES projection to GLEF_FIXED.

- **p** – The GLoBES projection to change.

**Returns:**

`void`
void nue_freeAllNU (glb_projection p)

This method sets all projection flags for the non-unitarity parameters in a GLoBES projection to GLB_FREE.

p – The GLoBES projection to change.

Returns:
void

void nue_fixPhases (glb_projection p)

This method sets all projection flags for the non-unitarity phase parameters in a GLoBES projection to GLB_FIXED.

p – The GLoBES projection to change.

Returns:
void

void nue_freePhases (glb_projection p)

This method sets all projection flags for the non-unitarity phase parameters in a GLoBES projection to GLB_FREE.

p – The GLoBES projection to change.

Returns:
void

void nue_fixEpss (glb_projection p)

This method sets all projection flags for the non-unitarity absolute value parameters in a GLoBES projection to GLB_FIXED.

p – The GLoBES projection to change.

Returns:
void

void nue_freeEpss (glb_projection p)

This method sets all projection flags for the non-unitarity absolute value parameters in a GLoBES projection to GLB_FREE.

p – The GLoBES projection to change.
Returns:

void

void nue_fixEps (glb_projection p, int n, int m)

This method sets the projection flag for the absolute value of the non-unitarity parameter in the $n$th row and $m$th column to GLB\_FIXED. This is equivalent to:

$$\text{glbSetProjectionFlag}(p, \text{GLB\_FIXED}, \text{NUE\_EPS}_nm)$$

- $p$ – The GLoBES projection to change.
- $n$ – The row of the flag to set. Should be 1, 2 or 3.
- $m$ – The column of the flag to set. Should be 1, 2 or 3.

Returns:

void

void nue_freeEps (glb_projection p, int n, int m)

This method sets the projection flag for the absolute value of the non-unitarity parameter in the $n$th row and $m$th column to GLB\_FREE. This is equivalent to:

$$\text{glbSetProjectionFlag}(p, \text{GLB\_FREE}, \text{NUE\_EPS}_nm)$$

- $p$ – The GLoBES projection to change.
- $n$ – The row of the flag to set. Should be 1, 2 or 3.
- $m$ – The column of the flag to set. Should be 1, 2 or 3.

Returns:

void

void nue_fixPhase (glb_projection p, int n, int m)

This method sets the projection flag for the phase of the non-unitarity parameter in the $n$th row and $m$th column to GLB\_FIXED. This is equivalent to:

$$\text{glbSetProjectionFlag}(p, \text{GLB\_FIXED}, \text{NUE\_PHI}_nm)$$

- $p$ – The GLoBES projection to change.
n – The row of the flag to set. Should be 1, 2 or 3.

m – The column of the flag to set. Should be 1, 2 or 3.

Returns:
void

void nue_freePhase (glb_projection p, int n, int m)

This method sets the projection flag for the phase of the non-unitarity parameter in the n\textsuperscript{th} row and m\textsuperscript{th} column to GLB\textsuperscript{FREE}. This is equivalent to:

\[ \text{glbSetProjectionFlag}(p,\text{GLB\_FREE},\text{NUE\_PHI}_nm) \]

p – The Glo\textsc{BES} projection to change.

n – The row of the flag to set. Should be 1, 2 or 3.

m – The column of the flag to set. Should be 1, 2 or 3.

Returns:
void

void nue_setParametrisation (int param)

This methods selects whether to use the triangular or hermitian parametrisation of the non-unitarity parameters as defined above. In the case of the hermitian parametrisation, the epsilons in the set and get functions are directly the elements of the hermitian matrix. In the case of the triangular parametrisation, the elements are defined as

\[
\alpha_{ee} = \varepsilon_{ee}, \quad \alpha_{\mu\mu} = \varepsilon_{\mu\mu}, \quad \alpha_{\tau\tau} = \varepsilon_{\tau\tau}
\]
\[
\alpha_{\mu e} = \varepsilon_{\mu e}, \quad \alpha_{\tau e} = \varepsilon_{\tau e}, \quad \alpha_{\tau\mu} = \varepsilon_{\tau\mu}.
\]

The default if no parametrisation is chosen is NUE\_TRIANGLE\_PARAM.

param – The parametrisation to be used. May be set to NUE\_TRIANGLE\_PARAM or NUE\_HERMITIAN\_PARAM.

Returns:
void

void nue_toPhysical (glb_params toTransf, void* user_data)

This is a physical transformation for usage with Monte\textsc{CUBES}. It simply puts the phases between −π and π and makes sure that the absolute values are positive. In addition, it calls the standard Monte\textsc{CUBES} function to make sure that the standard parameters are in the physical region.
APPENDIX B. THE NONUNITARITY ENGINE (NUE)

toTransf – The GLoBES parameter vector to transform. The entries of this vector will be changed by the function.

user_data – Ignored. Included for compliance with the MonteCUBES standard.

Returns:
void

double nue_prior (glb_params p, void* user_data)

Currently equivalent to the standard GLoBES prior.

p – The parameter vector for which to compute the prior.

user_data – Ignored. Included for compliance with the GLoBES standard.

Returns:
The value of the prior.

void nue_setAllNU (glb_params p, double v)

This method can be used to set all of the non-unitarity parameters in a GLoBES parameter vector to a certain value.

p – The GLoBES parameter vector in which to set the values.

v – The value to use for the parameters being set.

Returns:
void

void nue_setEpss (glb_params p, double v)

This method can be used to set all of the absolute values of the non-unitarity parameters in a GLoBES parameter vector to a certain value.

p – The GLoBES parameter vector in which to set the values.

v – The value to use for the parameters being set.

Returns:
void

void nue_setPhis (glb_params p, double v)

This method can be used to set all of the phases of the non-unitarity parameters in a GLoBES parameter vector to a certain value.
B.2. API DEFINITIONS

- The GLoBES parameter vector in which to set the values.
- The value to use for the parameters being set.

**Returns:**

void

**int nue_init_probability_engine ()**

The method that should be called to initiate the NUE.

**Returns:**

0

**int nue_free_probability_engine ()**

The method that should be called when freeing the memory allocated by the NUE.

**Returns:**

0

**int nue_set_oscillation_parameters (glb_params p, void* user_data)**

Sets the oscillation parameters that are used by the NUE to those specified in a GLoBES parameter vector.

**p** – The GLoBES parameter vector to use.

**user_data** – Ignored. Included for compliance with the GLoBES standard.

**Returns:**

0

**int nue_get_oscillation_parameters (glb_params p, void* user_data)**

Stores the oscillation parameters that are used by the NUE in the specified GLoBES parameter vector.

**p** – The GLoBES parameter vector to use.

**user_data** – Ignored. Included for compliance with the GLoBES standard.

**Returns:**

0
int nue_probability_matrix (double P[3][3], int cp_sign, double E, int psteps, const double *length, const double *density, double filter_sigma, void *user_data)

The method to compute the matrix of oscillation probabilities using the NUE.

P – A two-dimensional double array to store the oscillation probabilities.

cp_sign – Flag for neutrinos or anti-neutrinos, as per the GLoBES manual.

E – The neutrino energy, as per the GLoBES manual.

psteps – The number of steps, as per the GLoBES manual.

length – The length of the steps, as per the GLoBES manual.

density – The density in the steps, as per the GLoBES manual.

filter_sigma – Ignored. At present, the NUE is only able to compute the non-filtered probabilities.

user_data – This should be an integer array containing two entries. These entries are flags telling the NUE how to normalise the probabilities (see the discussion on normalisation in ref [7]) depending on what is actually measured by the experiment. The first entry of the array concerns the normalisation of the source flavour and the second the normalisation of the detected flavour. The integers refer to the power of \((NN^\dagger)_{\alpha\alpha}\) and \((NN^\dagger)_{\beta\beta}\), respectively, in the denominator of the final probability. For example, in Eq. (B.9), the array would have the entries 2 and 0, while in Eq. (B.10), it would have the entries 1 and 1 and in Eq. (B.11) the entries would be zero and zero.

Returns:
0

B.2.2 Constants

NUE_EPS_{11}, NUE_EPS_{EE}
Both of these constants are the same. They refer to the internal index of the non-unitary parameter \(\varepsilon_{ee}\).

NUE_EPS_{22}, NUE_EPS_{MM}
Both of these constants are the same. They refer to the internal index of the non-unitary parameter \(\varepsilon_{\mu\mu}\).

NUE_EPS_{33}, NUE_EPS_{TT}
Both of these constants are the same. They refer to the internal index of the non-unitary parameter \(\varepsilon_{\tau\tau}\).
B.2. API DEFINITIONS

**NUE_EPS_21, NUE_EPS_ME**
Both of these constants are the same. They refer to the internal index of the non-unitary parameter $|\epsilon_{\mu e}|$.

**NUE_EPS_31, NUE_EPS_TE**
Both of these constants are the same. They refer to the internal index of the non-unitary parameter $|\epsilon_{\tau e}|$.

**NUE_EPS_32, NUE_EPS_TM**
Both of these constants are the same. They refer to the internal index of the non-unitary parameter $|\epsilon_{\tau \mu}|$.

**NUE_PHI_21, NUE_PHI_ME**
Both of these constants are the same. They refer to the internal index of the non-unitary parameter $\arg(\epsilon_{\mu e})$.

**NUE_PHI_31, NUE_PHI_TE**
Both of these constants are the same. They refer to the internal index of the non-unitary parameter $\arg(\epsilon_{\tau e})$.

**NUE_PHI_32, NUE_PHI_TM**
Both of these constants are the same. They refer to the internal index of the non-unitary parameter $\arg(\epsilon_{\tau \mu})$.

**NUE_TOT_NO**
This constant has the value of the total number of oscillation parameters within the NUE.

**NUE_EPSS**
This constant has the value of the lowest index referring to a parameter describing the absolute values of the $\epsilon$s.

**NUE_PHIS**
This constant has the value of the lowest index referring to a parameter describing the phase of an $\epsilon$.

**NUE_TRIANGLE_PARAM**
This constant is used in the function `nue_setParametrisation` in order to tell the probability engine that the triangular parametrisation of the non-unitarity should be used. This is the default setting.

**NUE_HERMITIAN_PARAM**
This constant is used in the function `nue_setParametrisation` in order to tell the probability engine that the triangular parametrisation of the non-unitarity should be used.
Appendix C

The non-Standard Interaction Event Generator Engine (nSIEGE)

The non-Standard Interaction Event Generator Engine (nSIEGE) is a probabil-
ity engine implementing the physics of a non-standard matter interaction be-
tween background matter and neutrinos into GLoBES. The nSIEGE is installed
along with the MonteCUBES C library. However, the methods of nSIEGE are
included in the header file nsi.probability.h rather than in montecubes.h, 
although these will be located in the same directory after installation. You can
also use the nSIEGE independently from the rest of MonteCUBES. This appendix
describes the functionality that is added when including the header file through
the command:

```
#include <montecubes/NSI_probability.h>
```

C.1 Theory of a non-standard matter interac-
tions

Non-standard interactions (NSI) of neutrinos with matter are expected in a
number of different extensions of the Standard Model (SM). Usually, the NSI
are parametrized independently of the underlying theory through effective four-
fermion operators

\[ \mathcal{L}_{\text{NSI}} = -2 \sqrt{2} G_F \epsilon_{\alpha \beta} \mathcal{I} \mathcal{P} \mathcal{I} \mathcal{P} \left[ \bar{f} \gamma^\mu P f \right] \left[ \bar{\nu}_\alpha \gamma_\mu P_L \nu_\beta \right], \]  

(C.1)

where \( f \) is a matter fermion and \( P \) is a left- or right-handed projector. In
addition to these neutral-current-like (NC-like) processes, extensions of the SM
will in general also imply charged-current-like (CC-like) NSI, usually with some
correlation between the couplings. However, it has been common to study
the flavor propagation effects induced by NC-like processes separately from the
source and detector effects induced by the CC-like processes because of the lack
of model independent relations between the two.

The effect that NSI have on the neutrino flavor propagation can be effectively
described through making the substitution

\[
H_{\text{matter}} = \sqrt{2} G_F N_e \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{pmatrix} \rightarrow \sqrt{2} G_F N_e \begin{pmatrix}
1 + \epsilon_{ee} & \epsilon_{e\mu}^* & \epsilon_{e\tau}^* \\
\epsilon_{e\mu} & \epsilon_{\mu\mu} & \epsilon_{\tau\mu}^* \\
\epsilon_{e\tau} & \epsilon_{\tau\mu} & \epsilon_{\tau\tau}
\end{pmatrix},
\]

(C.2)

where \( N_e \) is the electron number density and the \( \epsilon_{\alpha\beta} \) are combinations of
the \( \epsilon_{\alpha\beta} \)s weighted properly for the relative abundance of the corresponding
fermions. Note that the diagonal elements are real due to hermiticity. Just
as in the case of unitarity violation (see App. B), this means that the new
physics are parametrized through the introduction of an arbitrary hermitian
matrix, which we again parametrize according to the modulus and phases,
\( \epsilon_{\alpha\beta} = |\epsilon_{\alpha\beta}| \exp(i \phi_{\alpha\beta}) \). It should be noted that the parameters used here do not
give the same matter interaction term as in the NUE, although we will use
the same notation for the extra parameters.

### C.2 API definitions

This section contains descriptions of the methods declared in the nSIEGE header
file, as well as a list of and explanations for the different constants that are
defined in it.

#### C.2.1 Methods

**void nsi_fixAllNSI** *(glb_projection p)*

This method sets all projection flags for the NSI parameters in a GLoBES
projection to GLB\_FIXED.

p – The GLoBES projection to change.

**Returns:**

void

**void nsi_freeAllNSI** *(glb_projection p)*

This method sets all projection flags for the NSI parameters in a GLoBES
projection to GLB\_FREE.

---

1An example of this is the scheme of minimal unitarity violation, which is also implemented
into MonteCUBES through NUE, see App. B.
void nsi_fixPhases (glb_projection p)

This method sets all projection flags for the NSI phase parameters in a GLoBES projection to GLB_FIXED.

p – The GLoBES projection to change.

Returns:
void

void nsi_freePhases (glb_projection p)

This method sets all projection flags for the NSI phase parameters in a GLoBES projection to GLB_FREE.

p – The GLoBES projection to change.

Returns:
void

void nsi_fixEpss (glb_projection p)

This method sets all projection flags for the NSI absolute value parameters in a GLoBES projection to GLB_FIXED.

p – The GLoBES projection to change.

Returns:
void

void nsi_freeEpss (glb_projection p)

This method sets all projection flags for the NSI absolute value parameters in a GLoBES projection to GLB_FREE.

p – The GLoBES projection to change.

Returns:
void
void nsi_fixEps (glb_projection p, int n, int m)

This method sets the projection flag for the absolute value of the NSI parameter in the nth row and mth column to GLB_FIXED. This is equivalent to:

    glbSetProjectionFlag(p,GLB_FIXED,NSI_EPS_nm)

p – The GLoBES projection to change.

q – The row of the flag to set. Should be 1, 2 or 3.

m – The column of the flag to set. Should be 1, 2 or 3.

Returns:
    void

void nsi_freeEps (glb_projection p, int n, int m)

This method sets the projection flag for the absolute value of the NSI parameter in the nth row and mth column to GLB_FREE. This is equivalent to:

    glbSetProjectionFlag(p,GLB_FREE,NSI_EPS_nm)

p – The GLoBES projection to change.

q – The row of the flag to set. Should be 1, 2 or 3.

m – The column of the flag to set. Should be 1, 2 or 3.

Returns:
    void

void nsi_fixPhi (glb_projection p, int n, int m)

This method sets the projection flag for the phase of the NSI parameter in the nth row and mth column to GLB_FIXED. This is equivalent to:

    glbSetProjectionFlag(p,GLB_FIXED,NSI_Phi_nm)

p – The GLoBES projection to change.

q – The row of the flag to set. Should be 1, 2 or 3.

m – The column of the flag to set. Should be 1, 2 or 3.
C.2. API DEFINITIONS

Returns:
void

void nsi_freeEps (glb_projection p, int n, int m)

This method sets the projection flag for the phase of the NSI parameter in the n-th row and m-th column to GLB_FREE. This is equivalent to:

\[
glbSetProjectionFlag(p, GLB_FREE, NSI_PHI_nm)\]

- \(p\) – The GLoBES projection to change.
- \(n\) – The row of the flag to set. Should be 1, 2 or 3.
- \(m\) – The column of the flag to set. Should be 1, 2 or 3.

Returns:
void

void nsi_toPhysical (glb_params toTransf, void* user_data)

This is a physical transformation for usage with MonteCUBES. It simply puts the phases between \(-\pi\) and \(\pi\) and makes sure that the absolute values are positive. In addition, it calls the standard MonteCUBES function to make sure that the standard parameters are in the physical region.

- \(toTransf\) – The GLoBES parameter vector to transform. The entries of this vector will be changed by the function.
- \(user_data\) – Ignored. Included for compliance with the MonteCUBES standard.

Returns:
void

double nsi_prior (glb_params p, void* user_data)

Currently equivalent to the standard GLoBES prior.

- \(p\) – The parameter vector for which to compute the prior.
- \(user_data\) – Ignored. Included for compliance with the GLoBES standard.

Returns:
The value of the prior.
void nsi_setAllNSI (glb_params p, double v)

This method can be used to set all of the NSI parameters in a GLoBES parameter vector to a certain value.

p – The GLoBES parameter vector in which to set the values.

v – The value to use for the parameters being set.

Returns:
void

void nsi_setEpss (glb_params p, double v)

This method can be used to set all of the absolute values of the NSI parameters in a GLoBES parameter vector to a certain value.

p – The GLoBES parameter vector in which to set the values.

v – The value to use for the parameters being set.

Returns:
void

void nsi_setPhis (glb_params p, double v)

This method can be used to set all of the phases of the NSI parameters in a GLoBES parameter vector to a certain value.

p – The GLoBES parameter vector in which to set the values.

v – The value to use for the parameters being set.

Returns:
void

int nsi_init_probability_engine ()

The method that should be called to initiate the nSIEGE.

Returns:
0

int nsi_free_probability_engine ()

The method that should be called when freeing the memory allocated by the nSIEGE.
C.2. API DEFINITIONS

Returns:
0

int nsi_set_oscillation_parameters (glb_params p, void* user_data)

Sets the oscillation parameters that are used by the nSIEGE to those specified in a GLoBES parameter vector.

p – The GLoBES parameter vector to use.

user_data – Ignored. Included for compliance with the GLoBES standard.

Returns:
0

int nsi_get_oscillation_parameters (glb_params p, void* user_data)

Stores the oscillation parameters that are used by the nSIEGE in the specified GLoBES parameter vector.

p – The GLoBES parameter vector to use.

user_data – Ignored. Included for compliance with the GLoBES standard.

Returns:
0

int nsi_probability_matrix (double P[3][3], int cp_sign, double E, int psteps, const double *length, const double *density, double filter_sigma, void *user_data)

The method to compute the matrix of oscillation probabilities using the nSIEGE.

P – A two-dimensional double array to store the oscillation probabilities.

cp_sign – Flag for neutrinos or anti-neutrinos, as per the GLoBES manual.

E – The neutrino energy, as per the GLoBES manual.

psteps – The number of steps, as per the GLoBES manual.

length – The length of the steps, as per the GLoBES manual.

density – The density in the steps, as per the GLoBES manual.

filter_sigma – Ignored. At present, the nSIEGE is only able to compute the non-filtered probabilities.
APPENDIX C. THE NSI EVENT GENERATOR ENGINE (NSIEGE)

user_data – Ignored. Included for compliance with the GLoBES standard.

Returns:
0

C.2.2 Constants

NSI_EPS_11, NSI_EPS_EE
Both of these constants are the same. They refer to the internal index of the NSI parameter $\varepsilon_{ee}$.

NSI_EPS_22, NSI_EPS_MM
Both of these constants are the same. They refer to the internal index of the NSI parameter $\varepsilon_{\mu\mu}$.

NSI_EPS_33, NSI_EPS_TT
Both of these constants are the same. They refer to the internal index of the NSI parameter $\varepsilon_{\tau\tau}$.

NSI_EPS_21, NSI_EPS_ME
Both of these constants are the same. They refer to the internal index of the NSI parameter $|\varepsilon_{\mu e}|$.

NSI_EPS_31, NSI_EPS_TE
Both of these constants are the same. They refer to the internal index of the NSI parameter $|\varepsilon_{\tau e}|$.

NSI_EPS_32, NSI_EPS_TM
Both of these constants are the same. They refer to the internal index of the NSI parameter $|\varepsilon_{\tau\mu}|$.

NSI_PHI_21, NSI_PHI_ME
Both of these constants are the same. They refer to the internal index of the NSI parameter $\text{arg}(\varepsilon_{\mu e})$.

NSI_PHI_31, NSI_PHI_TE
Both of these constants are the same. They refer to the internal index of the NSI parameter $\text{arg}(\varepsilon_{\tau e})$.

NSI_PHI_32, NSI_PHI_TM
Both of these constants are the same. They refer to the internal index of the NSI parameter $\text{arg}(\varepsilon_{\tau\mu})$.

NSI_TOT_NO
This constant has the value of the total number of oscillation parameters within the nSIEGE.

NSI_EPSS
This constant has the value of the lowest index referring to a parameter describing the absolute values of the $\varepsilon$s.
NSI_PHIS
This constant has the value of the lowest index referring to a parameter describing the phase of an $\varepsilon$. 
Bibliography


